Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Manokin formation"

RI53 Geology of the Seaford Area, Delaware

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St. Marys, and Manokin formations occur in the shallow subsurface within 300 ft of land surface. The Choptank, St. Marys, and Manokin formations were deposited in progressively shallower water marine environments. The Beaverdam Formation records incision of underlying units and progradation of a fluvial-deltaic system into the map area. The geologic history of the Quaternary is marked by weathering and erosion of the surface of the Beaverdam and deposition of the Nanticoke deposits by the ancestral Nanticoke River. Depositional environments in the Nanticoke deposits include fresh water streams and ponds, estuarine streams and lagoons, and subaerial dunes.

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

RI42 Stratigraphy and Depositional History of the Post-Choptank Chesapeake Group

Onshore and offshore geological and geophysical data were used to investigate the lithostratigraphy, seismic stratigraphy, and depositional history of the late Tertiary age post-Choptank Chesapeake Group rocks in Sussex County, Delaware and adjacent counties in Maryland. The results of this investigation suggest that the St. Marys (?) Formation and the sandy interval of which the Manokin aquifer is a part, are distinct lithostratigraphic units. The Manokin formation is proposed as an informal lithostratigraphic unit that refers to the sandy interval of which the Manokin aquifer is a part. On a regional scale, the section containing the Ocean City and Pocomoke aquifers and adjacent and intervening confining beds is best treated as a single undifferentiated lithostratigraphic unit. The Bethany formation is proposed as an informal lithostratigraphic unit that refers to this section.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.

GM9 Geology of the Seaford Area, Delaware

GM9 Geology of the Seaford Area, Delaware

This map shows the distribution of geologic units found at or near land surface. These units support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water. Previous maps and reports covering the same of adjacent areas have focused on hydrogeology (Andres, 1994), surficial geology on a regional basis (Jordan, 1964, 1974; Owens and Denny, 1979, 1986; Denny et al., 1979; Ramsey and Schenck, 199), or subsurface geology (Hansen, 1981; Andres, 1986).

DGS Geologic Map No. 9 (Seaford area) Dataset

DGS Geologic Map No. 9 (Seaford area) Dataset

These raster and vector datasets contains the rock unit polygons for DGS Geologic Map No. 9 (Seaford). This map shows the distribution of geologic units found at or near land surface.