Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Magothy aquifer"

Data and Graphs of Water Level Summaries for Wells with 20+ Years or 100+ Observations

Example Hydrograph for DB24-18 - Water Level Summaries for Wells with 20+ Years or 100+ Observations

Ground-water levels are basic information needed for evaluating water conditions and for basic and applied research. For these efforts, water levels are being measured statewide in wells completed in multiple aquifers. Some wells are measured for specific projects, such as the Coastal Aquifers Salinity Project and the Water Conditions program, while other wells are measured so that staff can maintain long term records of ground-water levels for evaluation of trends. Table contains summary data from wells having 100 or more water level observations.

Delaware Groundwater Monitoring Network

The Delaware Geological Survey (DGS) currently monitors groundwater levels in a network of 68 wells in Delaware. Long time-series of water levels in major aquifers serve as critical baseline data for resource management and analyses of aquifer response to pumping, climatic variability, drought hazards, seawater intrusion, and interaction with streams and their ecosystems.

RI77 Simulation of Groundwater Flow in Southern New Castle County, Delaware

RI77 Simulation of Groundwater Flow in Southern New Castle County, DelawareRI77 Simulation of Groundwater Flow in Southern New Castle County, Delaware

To understand the effects of projected increased demands on groundwater for water supply, a finite-difference, steady-state, groundwater flow model was used to simulate groundwater flow in the Coastal Plain sediments of southern New Castle County, Delaware. The model simulated flow in the Columbia (water table), Rancocas, Mt. Laurel, combined Magothy/Potomac A, Potomac B, and Potomac C aquifers, and intervening confining beds. Although the model domain extended north of the Chesapeake and Delaware Canal, south into northern Kent County, east into New Jersey, and west into Maryland, the model focused on the area between the Chesapeake and Delaware Canal, the Delaware River, and the Maryland-Delaware border. Boundary conditions for these areas were derived from modeling studies completed by others over the past 10 years.

Compilation and review of data used for model input revealed gaps in hydraulic properties, pumping, aquifer and confining bed geometry, and water-level data. The model is a useful tool for understanding hydrologic processes within the study area such as horizontal and vertical flow directions and response of aquifers to pumping, but significant data gaps preclude its use for detailed analysis for water resources management including estimating flow rates between Delaware and adjacent states. The calibrated model successfully simulated groundwater flow directions in the Rancocas and Mt. Laurel aquifers as expected from the conceptual model. Flow patterns in the Rancocas and Mt. Laurel aquifers are towards local streams, similar to flow directions in the Columbia (water table) aquifer in locations where these aquifers are in close hydraulic connection.

Water-budget calculations and simulated heads indicate that deep confined aquifers (Magothy and Potomac aquifers) receive groundwater recharge from shallow aquifers (Columbia, Rancocas, and Mt. Laurel aquifers) in most of the study domain. Within shallow aquifers, groundwater moves toward major streams, while in the deep aquifers, groundwater moves
toward major pumping centers.

Number of Pages: 
18

OFR24 Saturated Thickness of the Water-Table Aquifer in Southern New Castle County, Delaware

OFR24 Saturated Thickness of the Water-Table Aquifer in Southern New Castle County, Delaware

This map shows the saturated thickness of the water-table aquifer. This aquifer consists of the deposits of the Columbia Formation and those portions of the Magothy and Englishtown-Mt. Laurel formations, and Rancocas Group that are hydraulically connected with the Columbia deposits (see Groot, Demicco, and Cherry, 1983). For example, large, saturated thicknesses in the zone trending northeast-southwest near Townsend reflect the addition of the sands of the Rancocas Group to the total thickness of the sands of the overlying Columbia Formation.

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity. Recent dredging (1978, 1981) by the United States Army Corps of Engineers has helped expose a rich vertebrate fossil assemblage. It includes representatives from the classes Reptilia, Osteichthyes, and Chondrichthyes. An extensive literature search has revealed that a wealth of information exists which would aid in the identification of the vertebrate fossils of Delaware.

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

B16 Ground-Water Resources of the Piney Point and Cheswold Aquifers in Central Delaware as Determined by a Flow Model

A quasi three-dimensional model was constructed to simulate the response of the Piney Point and Cheswold aquifers underlying Kent County, Delaware to ground-water withdrawals. The model included the Magothy, Piney Point, Cheswold, and unconfined aquifers, and was calibrated using historical pumpage and water-level data. Model calibration was accomplished through the use of both steady-state and transient-state simulations.

Simulation of Groundwater Flow in Southern New Castle County, Delaware

Diagram of Conceptual Groundwater Flow Model
Project Contact(s):

To understand the effects of projected increased demands on ground water to supply water, a finite-difference, steady-state, nine-layer, groundwater flow model was used to simulate groundwater flow in the Coastal Plain sediments of southern New Castle County, Delaware. Results are published in DGS RI77