Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Faulkland Gneiss"

Outcrop Cc12-a: The Cave at Brandywine Springs

Rock Outcrop Cc12-a: The Cave at Brandywine Springs

Approximately 100 yards east of the tracks is one of the largest outcrops in the park. Here along the hillside, a thick layer of crinkle-folded, yellow-weathering gneiss overlies a layer of garnet-bearing quartzite and amphibolite. At the contact between the quartzite and the schist, a large piece of the quartzite has fallen out creating a small cave. Maybe Indians used this cave, but it is not very inviting. If you hit the black rocks with a hammer they will ring. Look for the tiny lavender garnets in the quartzite.

Faulkland Gneiss

Ofg

Predominantly fine- to coarse-grained amphibolites and quartz amphibolites with minor felsic rocks, probably metavolcanic. Major minerals are amphibole and plagioclase with or without pyroxene and/or quartz. Amphibole may be hornblende, cummingtonite, gedrite, and/or anthophyllite. Halos of plagioclase and quartz around porphyroblasts of magnetite, orthopyroxene, and garnet are common features.

What are GeoAdventures?

The Wilmington Western Railroad follows the Red Clay Valley through the Delaware Piedmont cutting through many of the Piedmont rock units.

GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

This page tagged with: