Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

Site content related to keyword: "dune deposits"

Delaware Geological Survey Issues Report on Groundwater Monitoring and Water-Quality Impacts of Rapid Infiltration Basin Systems

The Delaware Geological Survey released a new technical report entitled “Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems, Theory and Field Experiments at Cape Henlopen State Park, Delaware” which was prepared by A. Scott Andres and Changming He of the Delaware Geological Survey, Edward Walther of the South Water Management District, Florida, Müserref Türkmen of the Izmir Water and Sewerage Administration, Turkey, and Anastasia Chirnside and William Ritter of the University of Delaware. DGS Bulletin 21C documents the results of a detailed study of groundwater quality at a rapid infiltration basin system.

B21C Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems (RIBS), Theory and Field Experiments at Cape Henlopen State Park, Delaware

B21C Groundwater Quality and Monitoring of Rapid Infiltration Basin Systems (RIBS), Theory and Field Experiments at Cape Henlopen State Park, Delaware

A rapid infiltration basin system (RIBS) consists of several simple and relatively standard technologies; collection and conveyance of wastewater, treatment, and discharge to an unlined excavated or constructed basin. By design, the effluent quickly infiltrates through the unsaturated or vadose zone to the water table. During infiltration, some contaminants may be treated by biological and/or geochemical processes and diluted by dispersion and diffusion. The combination of contaminant attenuation and dilution processes that may occur during infiltration and flow through the aquifer are termed soil-aquifer-treatment, or SAT. In the past decade, RIBS have been proposed more frequently for use in Delaware because they stop the direct discharge of treated effluent to surface water, can accommodate significant flow volumes typical of residential subdivisions, yet require much less land than options such as spray irrigation or sub-surface disposal systems.

Decades of research on the shallow Columbia aquifer of the Delmarva Peninsula have clearly identified the high susceptibility of the aquifer from land- and water-use practices, and the processes that control the fate and transport of contaminants from their origin at or near land surface to points of discharge in creeks, estuaries, and wells. The risk of aquifer contamination is great because it is highly permeable, has little organic matter in the aquifer matrix, and the depth to groundwater is very commonly less than 10 ft below land surface. USEPA guidance documents and several engineering texts that cover RIBS design clearly identify these same factors as increasing risk for groundwater contamination but do not provide much information on means to monitor and mitigate those risks. Further, design criteria are based on a small group of experiments conducted in the 1970s prior to development of current understanding of the processes that control groundwater contaminant transport.

Field and laboratory experiments to characterize the physical, chemical, and biological controls and processes associated with the rapid infiltration of treated sewage effluent through infiltration beds and the vadose zone were undertaken at a RIBS located at Cape Henlopen State Park (CHSP), Delaware. Field experiments to understand the geochemical effects of the long-term operation of a RIBS on ground and surface waters, and to evaluate monitoring systems were also conducted at the site. The CHSP RIBS has been in operation since the early 1980s.

Significant concentrations of nitrogen and phosphorus occur in groundwater from the point of effluent entry at the water table to distances greater than 150 ft from the infiltration beds. The high hydraulic, nitrogen (N), phosporus (P), and organic loading rates associated with the operation of RIBS overwhelm natural attenuation (e.g., sorption and precipitation) processes. Data are not sufficient to indicate whether denitrification is occurring. If there is denitrification, the rate is insufficient to remediate RIBS effluent at the site — despite a 25-ft thick vadose zone, an effluent with enough organic carbon to facilitate anaerobic conditions that permit abiotic denitrification and feed microorganism-driven denitrification processes, and hypoxic to anoxic groundwater.

Significant horizontal and vertical variability of contaminant concentrations were observed within the portion of the aquifer most impacted by effluent disposal. Despite the relatively small spatial extent of the disposal area in our study area, identification of the preferential flow zone and characterization of the vertical and temporal variability in the concentrations of contaminants required a multi-phase subsurface investigation program that included an analysis of data from samples collected at bi-monthly intervals from dozens of monitoring points and high frequency temperature monitoring in several wells. A well-designed monitoring system should be based on experimentally determined site specific evidence collected under conditions that duplicate the flow rates that are expected during full-scale operation of the RIBS. Conservative tracers should be used to determine if the monitoring wells are in locations that intercept flow from the infiltration beds.

B21B Hydrogeology of a Rapid Infiltration Basin System (RIBS) at Cape Henlopen State Park, Delaware

B21B Hydrogeology of a Rapid Infiltration Basin System (RIBS) at Cape Henlopen State Park, Delaware

The hydrogeologic framework of Cape Henlopen State Park (CHSP), Delaware was characterized to document the hydrologic effects of treated wastewater disposal on a rapid infiltration basin system (RIBS). Characterization efforts included installation of test borings and monitoring wells; collection of core samples, geophysical logs, hydraulic test data, groundwater levels and temperatures; testing of grain size distribution; and interpretation of stratigraphic lithofacies, hydraulic test data, groundwater levels, and temperature data. This work was part of a larger effort to assess the potential benefits and risks of using RIBS in Delaware.

The infiltration basins at CHSP are constructed on the Great Dune, an aeolian dune feature composed of relatively uniform, medium-grained quartz sand. The age of the dune, determined by carbon-14 dating of woody material in swamp deposits under the dune, is less than 800 years. Underlying the dune deposits are relatively heterogeneous, areally continuous, coarse-grained spit deposits of the proto-Cape Henlopen spit with interbedded and relatively fine-grained, discontinuous swamp and marsh deposits, and beneath, relatively fine-grained, continuous, near-shore marine deposits. The dune deposits can be 45 ft thick under the crest of the dune and nonexistent at the surface. Spit deposits range from 5 to 15 ft thick. Test drilling determined that the near-shore marine deposits are at least 10 ft thick in the vicinity of the infiltration basins. The complete thickness of these deposits was not determined in this study.

Hydraulic testing and grain-size data indicate that the dune and spit deposits are relatively permeable, with average hydraulic conductivities of 140 ft/day and that the swamp and marsh deposits are more than one order of magnitude less permeable, with average hydraulic conductivity of 25 to 10 ft/day. The water-table aquifer is present in the sandier dune and spit deposits. The swamp, marsh, and near-shore marine deposits form a leaky confining unit. The water-table aquifer is 15 to 20 ft thick under the thickest section of the Great Dune and nonexistent where the dune deposits are absent. The vadose zone is greater than 25 ft thick under the infiltration basins.

High-frequency groundwater level and temperature monitoring during periods of maximum wastewater disposal rates indicates that wastewater disposal causes increases in water-table elevations on the order of 1 ft. Groundwater elevations indicate that the water-table elevation is greatest under the infiltration basins and that most flow is directed southward toward a swampy discharge area.

Maximum disposal rates typically occur in summer months when the numbers of park users and water use are greatest. Coincident with greater disposal rates are higher wastewater temperatures. These higher wastewater temperatures are observed in groundwater and provide a means to track the flow of water from beneath the infiltration beds towards a nearby discharge area. Tracking of the warmer groundwater and modeling two-dimensional particle tracking both indicate that wastewater discharged to the infiltration basins reaches the nearby discharge area within 180 days.

GM23 Geologic Map of the Seaford West and Seaford East Quadrangles, Delaware

GM23 Geologic Map of the Seaford West and Seaford East Quadrangles, Delaware

The geological history of the surficial units of the Seaford East Quadrangle and the Delaware portion of the Seaford West Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits incised into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and the Carolina Bays in the map area, which modified the land surface.

GM22 Geologic Map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

GM22 Geologic map of the Sharptown, Laurel, Hebron, and Delmar Quadrangles, Delaware

The geological history of the surficial geologic units in western Sussex County is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

Delaware Geological Survey releases new geologic map of the Trap Pond area

The Delaware Geological Survey (DGS) has published a new geologic map of the Trap Pond and Pittsville areas in central Sussex County titled Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware.

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

DGS Geologic Map No. 21 (Trap Pond and Pittsville Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 21 (Trap Pond and Pittsville Quadrangles, Delaware). The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

GM21 Geologic Map of the Trap Pond and Pittsville Quadrangles, Delaware

The geological history of the surficial units of the Trap Pond and the Delaware portion of the Pittsville Quadrangle was the result of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to the sea-level fluctuations during the Pleistocene. The geology reflects this complex history by the cut and fill geometry of the Middle and late Pleistocene deposits into the Beaverdam Formation. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays in the map area, which modified the land surface. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2-foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map.

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

The geological history of the surficial units of the Millsboro Quadrangle and
Delaware portion of the Whaleysville Quadrangle was the result of deposition of the
Beaverdam Formation during the late Pliocene and its subsequent modification by
erosion and deposition related to sea-level fluctuations during the Pleistocene and late
Pleistocene upland swamp and bog deposition. The geology at the land surface was then
further modified by periglacial activity that produced dune deposits and Carolina Bays in
the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles). The geological history of the surficial units of the Millsboro Quadrangle and Delaware portion of the Whaleysville Quadrangle was the result of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene and late Pleistocene upland swamp and bog deposition. The geology at the land surface was then further modified by periglacial activity that produced dune deposits and Carolina Bays in the map area. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles) exists for use in conjunction with this dataset.

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

The geological history of the surficial units of the Frankford and Delaware
portion of the Selbyville Quadrangles was the result of deposition of the Beaverdam
Formation during the late Pliocene and its subsequent modification by erosion and
deposition related to sea-level fluctuations during the Pleistocene. The geology at the
land surface was then further modified by periglacial activity that produced dune deposits
in the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay Quadrangles). The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay quadrangles) exists for use in conjunction with this dataset.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

DGS Geologic Map No. 17 (Harbeson quadrangle) Dataset

DGS Geologic Map No. 17  (Harbeson quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 17 (Harbeson quadrangle). The complex geologic history of the surficial units of the Harbeson Quadrangle is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.

GM11 Geology of the Ellendale and Milton Quadrangles, Delaware

GM11 Geology of the Ellendale and Milton Quadrangles, Delaware

The surficial geology of the Ellendale and Milton quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low sea levels during the Quaternary. Ramsey (1992) interpreted the Beaverdam Formation as deposits of a fluvial-estuarine system during the Pliocene. Sediment supply was high, in part due to geomorphic adjustments in the Appalachians related to the first major Northern Hemisphere glaciations around 2.4 million years ago. The Beaverdam Formation forms the core of the central Delmarva Peninsula around which wrap the Quaternary deposits.