Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Columbia Formation"

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

RI78 Subsurface Geology of the Area Between Wrangle Hill and Delaware City, Delaware

The geology and hydrology of the area between Wrangle Hill and Delaware City, Delaware, have been the focus of numerous studies since the 1950s because of the importance of the local groundwater supply and the potential environmental impact of industrial activity. In this report, 490 boreholes from six decades of drilling provide dense coverage, allowing detailed characterization of the subsurface geologic framework that controls groundwater occurrence and flow.

The region contains a lower section of tabular Cretaceous strata (Potomac, Merchantville, Englishtown, Marshalltown,and Mount Laurel Formations in ascending order) and a more stratigraphically complex upper section of Pleistocene-to-modern units (Columbia, Lynch Heights, and Scotts Corners Formations, latest Pleistocene and Holocene surficial sediments and estuarine deposits). The lowermost Potomac Formation is a mosaic of alluvial facies and includes fluvial channel sands that function as confined aquifer beds; however, the distribution of aquifer-quality sand within the formation is extremely heterogeneous. The Merchantville Formation serves as the most significant confining layer. The Columbia Formation is predominantly sand and functions as an unconfined aquifer over much of the study area.

To delineate the distribution and character of the subsurface formations, densely spaced structural-stratigraphic cross sections were constructed and structural contour maps were created for the top of the Potomac Formation and base of the Columbia Formation. The Cretaceous formations form a series of relatively parallel strata that dip gently (0.4 degrees) to the southeast. These formations are progressively truncated to the north by more flatly dipping Quaternary sediments, except in a narrow north-south oriented belt on the east side of the study area where the deeply incised Reybold paleochannel eroded into the Potomac Formation.

The Reybold paleochannel is one of the most significant geological features in the study area. It is a relatively narrow sandfilled trough defined by deep incision at the base of the Columbia Formation. It reaches depths of more than 110 ft below sea level with a width as narrow as 1,500 ft. It is interpreted to be the result of scour by the sudden release of powerful floodwaters from the north associated with one or more Pleistocene deglaciations. Where the Reybold paleochannel cuts through the Merchantville confining layer, a potential pathway exists for hydrological communication between Columbia and Potomac aquifer sands.

East of the paleochannel, multiple cut-and-fill units within the Pleistocene to Holocene section create a complex geologic framework. The Lynch Heights and Scotts Corners Formations were deposited along the paleo-Delaware River in the late Pleistocene and are commonly eroded into the older Pleistocene Columbia Formation. They are associated with scarps and terraces that represent several generations of sea-level-driven Pleistocene cut-and-fill. They, in turn, have been locally eroded and covered by Holocene marsh and swamp deposits. The Lynch Heights and Scotts Corners Formations include sands that are unconfined aquifers but complicated geometries and short-distance facies changes make their configuration more complex than that of the Columbia Formation.

Number of Pages: 
28

DGS issues report on groundwater modeling in southern New Castle County

The Delaware Geological Survey (DGS) released a new technical report entitled Simulation of Groundwater Flow in Southern New Castle County, Delaware, which was prepared by Changming He and A. Scott Andres of the DGS.

DGS Report of Investigations No. 77 is a preliminary step in developing a detailed understanding of the subsurface hydrology and evaluating groundwater availability in major aquifer systems beneath southern New Castle County and parts of northern Kent County, which are expected to have greater demands for groundwater in the next 20 years due to population growth.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation. The Assawoman Bay Group, recognized inland of Delaware’s Atlantic Coast, is subdivided into the Omar Formation, the Ironshire Formation, and the Sinepuxent Formation. The Nanticoke River Group, found along the margins of the Nanticoke River and its tributaries, is subdivided into the Turtle Branch Formation (named herein) and the Kent Island Formation.

Delaware Bay Group deposits consist of bay-margin coarse sand and gravel that fine upward to silt and silty sand. Beds of organic-rich mud were deposited in tidal marshes. Near the present Atlantic Coast, the Delaware Bay Group includes organic-rich muds and shelly muds deposited in lagoonal environments.

Assawoman Bay Group deposits range from very fine, silty sands to silty clays with shells deposited in back-barrier lagoons, to fine to coarse, well-sorted sands deposited in barriers and spits.

Nanticoke River Group deposits consist of coarse sand and gravel that fine upward to silty clays. Oyster shells are found associated with the clays in the Turtle Branch Formation. Organic-rich clayey silts were deposited in swamps and estuaries. Well-sorted fine sands to gravelly sands were deposited on beaches and tidal flats on the flanks of the ancestral Nanticoke River and its tributaries.

The Lynch Heights, Omar, and Turtle Branch Formations are age-equivalent units associated with highstands of sea level,which occurred at approximately 400,000 and 325,000 yrs B.P. (MIS 11 and 9, respectively). The Scotts Corners, Ironshire, Sinepuxent, and Kent Island Formations are age-equivalent units associated with highstands of sea level, which occurred between 120,000 and 80,000 yrs B.P. (MIS 5e and 5a, respectively).

Number of Pages: 
50

Delaware Emergency Management Agency (DEMA) Seismic Station

Delaware Emergency Management Agency (DEMA) Seismic Station. The seismometer, located at the Delaware Emergency Management Agency, is located on the Columbia Formation. The Columbia Formation is a fine to coarse, feldspathic quartz sand with varying amounts of gravel. It is primarily a body of glacial outwash sediment deposited in a cold climate during the middle Pleistocene.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Number of Pages: 
47

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

Columbia Formation

Qcl

Yellowish- to reddish-brown, fine to coarse, feldspathic quartz sand with varying amounts of gravel. Typically cross-bedded with cross-sets ranging from a few inches to over three feet in thickness. Scattered beds of tan to reddish-gray clayey silt are common. In places, the upper 5 to 25 feet consists of grayish- to reddish-brown silt to very fine sand overlying medium to coarse sand. Near the base, clasts of cobble to small boulder size have been found in a gravel bed ranging from a few inches to three feet thick. Gravel fraction primarily quartz with lesser amounts of chert. Clasts of sandstone, siltstone and shale from the Valley and Ridge, and pegmatite, micaceous schist, and amphibolite from the Piedmont are also present. Fills a topographically irregular surface, is less than 50 feet thick, and is interpreted to be primarily a body of fluvial glacial outwash sediment (Jordan, 1964; Ramsey, 1997). Pollen indicate deposition in a cold climate during the middle Pleistocene (Groot and Jordan, 1999).

OFR24 Saturated Thickness of the Water-Table Aquifer in Southern New Castle County, Delaware

OFR24 Saturated Thickness of the Water-Table Aquifer in Southern New Castle County, Delaware

This map shows the saturated thickness of the water-table aquifer. This aquifer consists of the deposits of the Columbia Formation and those portions of the Magothy and Englishtown-Mt. Laurel formations, and Rancocas Group that are hydraulically connected with the Columbia deposits (see Groot, Demicco, and Cherry, 1983). For example, large, saturated thicknesses in the zone trending northeast-southwest near Townsend reflect the addition of the sands of the Rancocas Group to the total thickness of the sands of the overlying Columbia Formation.

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

OFR21 A Guide to Fossil Sharks, Skates, and Rays from the Chesapeake and Delaware Canal Area, Delaware

In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity. Recent dredging (1978, 1981) by the United States Army Corps of Engineers has helped expose a rich vertebrate fossil assemblage. It includes representatives from the classes Reptilia, Osteichthyes, and Chondrichthyes. An extensive literature search has revealed that a wealth of information exists which would aid in the identification of the vertebrate fossils of Delaware.

OFR13 Delaware's Extractive Mineral Industry

OFR13 Delaware's Extractive Mineral Industry

The purpose of this report is to provide information on the mining industry of Delaware as an essential component of a growing economy. The industry, particularly in sand and gravel mining, must deal with uneven regulation, land use competition, and environmental pressures. It is hoped that the information gathered here will assist planning and regulatory agencies as well as an interested general public in evaluating the role of the extractive mineral industry.

OFR8 Guidebook: Columbia Deposits of Delaware

OFR8 Guidebook: Columbia Deposits of Delaware

The Columbia sediments of Delaware cover almost all of the surface of the Coastal Plain portion of the State. A major unconformity separates these predominantly sandy materials from the underlying rocks of the Coastal Plain. As it includes the materials closest to the surface in most places, the Columbia has great practical importance in Delaware. In addition to the morphology and soils which are largely dictated by the Columbia, it holds about 90 percent of the State's groundwater supplies, is the geologic foundation for most construction, and yields essentially all of the sand and gravel mined here.

OFR49 Hydrologeologic Framework of Southern New Castle County

OFR49 Hydrologeologic Framework of Southern New Castle County

Southern New Castle County is dependent on ground water for nearly all of its water supply. The area has been undergoing development from predominately agricultural land use to urban/suburban land use (Delaware Water Supply Coordinating Council [WSCC], 2006). With this development comes a need to more accurately predict the availability of ground water to reduce the potential of overusing the resource. This report has 3 plates listed as separate files.

Number of Pages: 
27

OFR25 Saturated Thickness of the Columbia Formation in Southern New Castle County, Delaware

OFR25 Saturated Thickness of the Columbia Formation in Southern New Castle County, Delaware

This map shows the saturated thickness of the Columbia Formation. The Columbia Formation covers most of the Coastal Plain of Delaware. Because it consists primarily of coarse sand, it is important to the hydrology of the area. It is an important groundwater reservoir and in most places water must pass through it to reach deeper units. The water budget of the Columbia Formation also influences runoff and baseflow components of streamflow. The saturated thickness was determined through interpretation of data in publications and files of the Delaware Geological Survey, United States Geological Survey, and the Water Resources Center of the University of Delaware. The thicknesses shown on the map represent the best judgment of the authors based on available data. Detailed investigations of specific sites will require additional data.

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

The Columbia (Pleistocene) deposits of Delaware form a regional water-table aquifer, which supplies about half the ground water pumped in the State. The aquifer is composed principally of sands which occur as channel fillings in northern Delaware and as a broad sheet across central and southern Delaware. The saturated thickness of the aquifer ranges from a few feet in many parts of northern Delaware to more than 180 feet in southern Delaware. Throughout 1,500 square miles of central and southern Delaware (75 percent of the State's area), the saturated thickness ranges from 25 to 180 feet and the Columbia deposits compose all or nearly all of the water-table aquifer.

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

Columbia sediments in the Middletown-Odessa area are composed of boulders, gravels, sands, silts and clays. These sediments are exposed in four gravel pits where their structures and textures were studied. Subsurface geology was interpreted on the basis of the well-log data from 40 holes drilled in the area of study. Columbia sediments were laid upon a surface made up of the greensands of the Rancocas Formation (Paleocene – Eocene age). The contact between the Rancocas and Columbia Formations is an erosional unconformity.

B12 Columbia (Pleistocene) Sediments of Delaware

B12 Columbia (Pleistocene) Sediments of Delaware

The Columbia deposits of Delaware form a sheet of sand with a maximum thickness of approximately 150 feet which covers most of the Coastal Plain portion of the State. The dispersal pattern, deduced from foreset dip directions of cross-bedding, indicates that the sediment entered the study area from the northeast, i.e., from the direction of the valley of the Delaware River between Wilmington and Trenton, and spread south and southeast over Delaware.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

RI23 Cretaceous and Tertiary Section, Deep Test Well, Greenwood, Delaware

RI23 Cretaceous and Tertiary Section, Deep Test Well, Greenwood, Delaware

Analyses of drillers' and geophysical logs, cuttings, and 29 core samples from well Nc13-3 near Greenwood, Sussex County, Delaware indicate that the 1500-foot section penetrated by the drill can be divided into seven rock-stratigraphic units: Matawan Formation, Monmouth Formation, unit A, Piney Point Formation, Chesapeake Group (undifferentiated), Staytonville unit, and the Columbia Formation. The rock units are identified on the basis of texture, mineralogy, color, and interpretation of electric and gamma-ray logs. The oldest rocks penetrated are Upper Cretaceous; Tertiary and Quaternary rocks were also encountered. Correlations of the units encountered in the Greenwood test well with subsurface formations in adjacent parts of the Coastal Plain are explored utilizing lithologies, ages, positions in the stratigraphic column, and geophysical characteristics as criteria. Major time boundaries (Cretaceous-Tertiary; Early-Late Paleocene; Paleocene-Eocene; and Eocene-Miocene) are established by a preliminary study of mainly planktonic foraminifera. The Miocene-Pleistocene boundary was determined on changes in lithology across the unconformable contact.

HM11 Ground-Water Recharge Potential Kent County, Delaware

Ground-Water Recharge Potential Kent County, Delaware

The ground-water recharge potential map of Kent County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

Map Scale: 
24,000