Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Cockeysville Marble"

Geologic History of the Delaware Piedmont

Fig A. Cross section of eastern North America as it may have looked 543 million years ago, active volcano is offshore.

The Delaware Piedmont is but a small part of the Appalachian Mountain system that extends from Georgia to Newfoundland. This mountain system is the result of tectonic activity that took place during the Paleozoic era, between 543 and 245 million years ago. Since that time, the mountains have been continuously eroding, and their deep roots slowly rising in compensation as the overlying rocks are removed. It is surprising to find that although the Delaware Piedmont has passed through the whole series of tectonic events that formed the Appalachians, the mineralogy and structures preserved in Delaware were formed by the early event that occurred between 470 and 440 million years ago, called the Taconic orogeny.

Cockeysville Marble

Ocm

In Delaware, predominantly a pure, coarsely crystalline, blue-white dolomite marble interlayered with calc-schist. Major minerals in the marble include calcite and dolomite with phlogopite, diopside, olivine, and graphite. Major minerals in the calc-schist are calcite with phlogopite, microcline, diopside, tremolite, quartz, plagioclase, scapolite, and clinozoisite. Pegmatites and pure kaolin deposits and quartz occur locally.

SP4 Generalized Geologic Map of Delaware

SP4 Generalized Geologic Map of Delaware

The Generalized Geologic Map of Delaware is a brief summary for general use indicating the major types and locations of rocks present throughout the State, and their interrelationships. The map is preliminary as it is a first step in a continuing program of detailed geologic mapping. It is based upon many existing sources of data; additional detail may be found in the references listed.

OFR14 Sinkholes, Hockessin Area, Delaware

OFR14 Sinkholes, Hockessin Area, Delaware

Sinkholes are depressions in the land surface or holes in the ground caused by subsidence or collapse of surficial material into openings in soluble rock. Sinkholes usually develop in "karst" areas underlain by carbonate rocks. Karst is defined as "terrane with distinctive characteristics of relief and drainage arising primarily from a higher degree of rock solubility in natural waters than is found elsewhere" (Jennings, 1971, p.1). In addition to sinkholes, other features associated with karst are: caves, disappearing streams, and well-developed subsurface drainage systems.

B19 Geology and Hydrology of the Cockeysville Formation Northern New Castle County, Delaware

B19 Geology and Hydrology of the Cockeysville Formation Northern New Castle County, Delaware

The effect of rapid growth in the Hockessin and Pleasant Hill areas in northern Delaware has caused concern about possible declines in ground-water recharge to the underlying Cockeysville Formation. The Cockeysville is a major source of ground water (aquifer) in the Hockessin area from which about 1.5 million gallons of water per day is withdrawn for public water supply, even though it receives recharge over a relatively small area of 1.6 square miles. The Cockeysville in the Pleasant Hill area is currently used as a source at water supply for individual domestic users and one school. Results of ground-water exploration in the Pleasant Hill area suggest that the Cockeysville is capable of yielding several hundreds of gallons per minute to individual wells for water supply. A two-year investigation was undertaken to map the extent of the Cockeysville Formation and address questions of long-term ground-water yields. the sources of recharge, and the effects of additional development on ground-water supplies. Results of various field studies were integrated to determine the basic geologic framework and those elements that particularly affect ground-water supply.

Piedmont Rock Units

The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the Delaware Piedmont by the Delaware Geological Survey.

What are GeoAdventures?

The Wilmington Western Railroad follows the Red Clay Valley through the Delaware Piedmont cutting through many of the Piedmont rock units.

GeoAdventures are designed to allow the reader to learn about a particular geologic point of interest in Delaware’s Piedmont province and then take a short field trip to that area. Want to know more about the Wilmington blue rock or Brandywine blue granite? Take the Wilmington Blue Rock GeoAdventure and go see just what the blue rock looks like.

Overview of the Piedmont

The Piedmont is defined by hard crystalline rocks north of the fall zone.

The Appalachian Piedmont and Atlantic Coastal Plain are physiographic provinces that are separated by the fall zone. The fall zone (also called the Fall Line) is the contact where the hard crystalline rocks of the Piedmont dip under and disappear beneath the sediments of the Coastal Plain. The landscape and rock types shown in northern Delaware are classical examples of the larger geologic features that dominate the geology of eastern North America.

HM2 Geohydrology of the Newark Area, Delaware

Geohydrology of the Newark Area, Delaware

Geology and Hydrology of the Newark, Delaware area. There are 2 sheets in this series.

Map Scale: 
24,000

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

Map Scale: 
100,000
This page tagged with: