Brandywine Blue Gneiss

OFR54 Bedrock Geologic Map of the Delaware Piedmont

The Piedmont rock units in Delaware, and bedrock geologic map of Schenck et al. (2000) are revised in this report based on new rock geochemistry, geochronometric data, petrography, and recent detailed mapping. Major revisions include:

OFR55 Delaware Geological Survey Petrographic Data Viewer

Petrography is a branch of geoscience focused on the description and classification of rocks, primarily by microscopic study of optical properties of minerals. A thin sliver of rock is cut from a sample, mounted on a glass slide, ground to approximately 30 microns (0.03mm), and viewed under a microscope that uses polarized light. By observing the colors produced as plain polarized light and crossed (90 degrees) polarized light shines through the minerals, petrologists can determine the minerals that comprise the sampled rock.

A.I.duPont Students see geology of the Delaware Piedmont

Date

William "Sandy" Schenck lead a field trip through the Delaware Piedmont for the A.I. duPont High School Earth Science Class. The trip made use of the Wilmington-Western Railroad and everyone rode the railroad's "Doodle Bug." Activities included up close examinations of rock and mineral features and even "Panning for Garnets" at Brandywine Springs Park.

Outcrop Bd42-e: The Cliffs of Alapocas Woods

Located in Wilmington, DE, the Cliffs of Alapocas Woods are opposite the old Bancroft Mills across the Brandywine Creek. Along the creek you will find large exposures of Brandywine Blue Gneiss. Compared to other outcrops in the Piedmont of Delaware, the rock examples here are massive. When observed closely, the felsic gneiss displays a medium grain size. Most of early Wilmington was built from the stone from these quarries. These impressive rock features are enjoyed by local rock climbers as well as many who use the Northern Delaware Greenway.

RI59 Bedrock Geology of the Piedmont of Delaware and Adjacent Pennsylvania

This report accompanies a new map that revises the original bedrock geologic maps of the Delaware Piedmont compiled by Woodruff and Thompson and published by the Delaware Geological Survey (DGS) in 1972 and 1975. Combined detailed mapping, petrography, geochemistry, and U-Pb geochronology have allowed us to redefine two rock units and formally recognize eleven new units. A section of the Pennsylvania Piedmont is included on the new map to show the entire extent of the Mill Creek Nappe and the Arden Plutonic Supersuite.

Brandywine Blue Gneiss

Medium to coarse grained granulites and gneisses composed of plagioclase, quartz, orthopyroxene, clinopyroxene, brown-green hornblende, magnetite, and ilmenite. Mafic minerals vary from 5-30 modal percent. A lineation due to a preferred orientation of quartz and mafic minerals is obvious on weathered surfaces. Unit contains thin, discontinuous fine-grained mafic layers.

Exploring the Wilmington Blue Rocks: A GeoAdventure in the Delaware Piedmont

The Wilmington blue rock, Delaware's most famous rock, underlies both the city of Wilmington and the rolling upland north and east of the city. It is best exposed along the banks of the Brandywine Creek from south of Rockland to the Market Street Bridge. Along this section the Brandywine has carved a deep gorge in the blue rock. The water fall along this four mile gorge is approximately 120', and in the 17th and 18th centuries provided water power for one of the greatest industrial developments in the American colonies. The field trip stops described below are chosen as good examples of blue rock along the Brandywine Creek, and to illustrate how the geology has influenced the development of this area. It is not necessary to visit every stop to become familiar with the blue rocks, you may choose to visit only a few.

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water.