Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "beach deposits"

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

DGS Geologic Map No. 18 (Bethany Beach and Assawoman Bay Quadrangles, Delaware) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay Quadrangles). The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 18 (Bethany Beach and Assawoman Bay quadrangles) exists for use in conjunction with this dataset.

GM18 Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

Geologic Map of the Bethany Beach and Assawoman Bay Quadrangles, Delaware

The geologic history of the surficial units of the Bethany Beach and Assawoman Bay Quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history onshore, in Indian River Bay and Assawoman Bay, and offshore in the Atlantic Ocean. Erosion during the late Pleistocene sea-level lowstand and ongoing deposition offshore and in Indian River Bay during the Holocene rise in sea level represents the latest of several cycles of erosion and deposition.

Map Scale: 
24.000

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

HM11 Ground-Water Recharge Potential Kent County, Delaware

Ground-Water Recharge Potential Kent County, Delaware

The ground-water recharge potential map of Kent County, Delaware, is a compilation of 1:24,000-scale maps of the water-transmitting properties of sediments in the interval between land surface and 20 ft below land surface. Water-transmitting properties are a key factor in determining the amount of water that recharges Delaware’s aquifers and the susceptibility of aquifers used as sources of water supply to contamination from near-surface pollutant sources. The mapping methodology was developed by Andres (1991) for the geologic characteristics of the Atlantic Coastal Plain portion of Delaware. Mapping and methods development started in 1990 and the final maps were completed in 2002 (Andres et al., 2002). Additional information about the map and methodology and a list of cited references are presented on the reverse side. The mapping program was funded by the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey.

Map Scale: 
24,000

HM10 Geohydrology of the Smyrna-Clayton Area, Delaware

HM10 Geohydrology of the Smyrna-Clayton Area, Delaware

Geology and hydrology of the Smyrna-Clayton area, Delaware. There are 2 sheets in this series.

Map Scale: 
24,000