Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Miocene"

Geologic History of the Delaware Coastal Plain

In Delaware, the oldest unit of the Atlantic Coastal Plain is the Potomac Formation. Sediment eroded from the Appalachian Mountains was deposited in rivers and swamps in a tropical climate along the margins of the forming ocean during the latter part of Early Cretaceous time, about 120 million years ago.

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

RI17 Ground-Water Geology of the Delaware Atlantic Seashore

The need for locating additional sources of ground water for the Delaware Atlantic seashore, a predominantly recreation-oriented area, is indicated by an expanding population in the belt between Philadelphia, Pennsylvania and Washington, D.C., combined with increasing leisure time. Present water use in the shore area is approximately 4 million gallons per day and will reach 9.3 million gallons per day by the year 2000. A new geologic interpretation of the occurrence of deep aquifers in the Delaware Atlantic seashore area is presented. Recent data from deep wells has enabled the construction of a more accurate geologic framework upon which the hydrologic data are superimposed. Correlation of Miocene sands concludes that the Manokin aquifer lies at greater depths in southeastern Delaware than previously thought.

GM14 Geologic Map of Kent County, Delaware

GM14 Geologic Map of Kent County, Delaware

This map shows the surficial geology of Kent County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as flood-prone areas, to identify sand and gravel resources, and to support state, county, and local land-use and planning decisions.

Map Scale: 
100,000

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

Map Scale: 
100,000
This page tagged with:

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.

Map Scale: 
24,000

GM9 Geology of the Seaford Area, Delaware

GM9 Geology of the Seaford Area, Delaware

This map shows the distribution of geologic units found at or near land surface. These units support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water. Previous maps and reports covering the same of adjacent areas have focused on hydrogeology (Andres, 1994), surficial geology on a regional basis (Jordan, 1964, 1974; Owens and Denny, 1979, 1986; Denny et al., 1979; Ramsey and Schenck, 199), or subsurface geology (Hansen, 1981; Andres, 1986).

Map Scale: 
24,000

GM8 Geology of the Milford and Mispillion River Quadrangles, Delaware

Geology of the Milford and Mispillion River Quadrangles, Delaware

This map is the first detailed surficial geologic map in southern Kent and northern Sussex counties. Other maps covering the same or adjacent areas have focused on subsurface geology (Benson and Pickett, 1986), hydrogeology (Talley, 1982), or surficial geology on a regional basis (Jordan, 1964; Owens and Denny, 1979; Ramsey and Schenck, 1990). The purpose of this map is to show the distribution of geologic units found at or near the present land surface. These units are composed of the geologic materials that support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water.

Map Scale: 
24,000

RI13 The Occurrence of Saline Ground Water in Delaware Aquifers

RI13 The Occurrence of Saline Ground Water in Delaware Aquifers

The location of the fresh-salt-water-boundary in the deeper aquifers of Delaware is related mainly to head values. Near coastal areas, dynamic conditions may prevail that affect the interface position within shallow aquifers open to the sea. Holocene and Columbia sands which form Delaware's shallow water-table aquifers contain brackish water in scattered coastal areas while brackish water in the artesian aquifers is found at various depths. Water from Chesapeake Group sediments (Miocene) is fresh in Kent County but is salty in poorly defined areas of Sussex County. The interface in the Piney Point Formation (Eocene) lies just north of Milford and extends in a northeast-southwesterly direction across the State. Brackish water exists in the Magothy and Potomac formations of Cretaceous age a few miles south of Middletown. Heavy pumping near sources of brackish water should be avoided for the present. Proper location of monitoring wells is necessary for detection of future chloride movement.

DGS issues report on the geology of Bethany Beach

RI75 Stratigraphy And Correlation Of The Oligocene To Pleistocene Section At Bethany Beach, Delaware

The Delaware Geological Survey (DGS) at the University of Delaware released a report that provides new insights into the underground geology and hydrology of southeastern Sussex County, Delaware. The report, "Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware," summarizes the results of geological investigations conducted on a 1,470-foot-deep research borehole drilled at Bethany Beach, Del.