upper Miocene

GM26 Geologic Map of the Cecilton and Middletown Quadrangles, Delaware

Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. Most stratigraphic units mapped in stream valleys are projected from subsurface data. Except for a few erosional bluffs, these units are covered by colluvium. This map supersedes Geology of the Middletown-Odessa Area, Delaware: Delaware Geological Survey Geologic Map Series No. 2 (Pickett and Spoljaric, 1971).

OFR52 Results of Groundwater Flow Simulations In the East Dover Area, Delaware

In 2015, staff of the Water Supply Section of the Delaware Department of Natural Resources and Environmental Control (DNREC) informed the DGS of their concerns about overpumping of the unconfined Columbia aquifer in an area east of Dover (Figure 1). In this area, the City of Dover’s Long Point Road Wellfield (LPRW) and numerous irrigation systems pump water from the shallow Columbia aquifer.

GM24 Geologic Map of the Millington, Clayton and Smyrna Quadrangles, Delaware

The geological history of the surficial units of the Clayton, Smyrna, and the Delaware portion of the Millington Quadrangles are the result of deposition of the Beaverdam Formation and its modification by erosion and deposition of the Columbia Formation during the early Pleistocene. These units were then modified by the Lynch Heights and Scotts Corners Formations as a result of sea-level fluctuations during the middle to late Pleistocene. The geology is further complicated by periglacial activity that produced Carolina Bay deposits in the map area, which modified the land surface.

Bethany Formation

The composition, thickness, and geophysical log signature of the Bethany Formation vary with location and depth. In general, the Bethany Formation is a sequence of clayey and silty beds with discontinuous lenses of sand (Andres, 1986; Ramsey, 2003). The most common lithologies are silty, clayey fine sand; sandy, silty clay; clayey, sandy silt; fine to medium sand; sandy, clayey silt, and medium to coarse sand with granule and pebble layers. Thin gravel layers occur most frequently in updip areas and are rarer in downdip areas. Sands are typically quartzose. Lignite, plant remains, and mica are common, grains of glauconite are rare. In the Lewes area, Ramsey (2003) describes the Bethany Formation as consisting of gray, olive gray, bluish-gray clay to clayey silt interbedded with fine to very coarse sand. Lignitic and gravelly beds are common.

Cat Hill Formation

Yellowish-brown to light-gray, medium to fine sand with thin beds and laminae of medium to coarse sand and scattered pebbles (B) that grades downward into bioturbated, gray, very fine sand to silt (A). Rare beds of light-gray to red silty clay are found near the contact with the overlying Beaverdam Formation. Laminae of opaque heavy minerals are present in the upper sands. Laminae of very fine organic particles are found in the lower sand as well as laminae to thin beds of coarse sand to gravel. The burrows in the lower sand are clay lined, and in some intervals, the sediment is completely bioturbated to the extent that no sedimentary structures are preserved. Sand is primarily quartz with less than 5% feldspar and a trace to less than 1% mica (in the very fine sand to silt). Glauconite is present only in trace amounts. Fragments of lignite are common to rare in the organic laminae. Interpreted to be a late Miocene, very shallow marine to marginal marine (shoreface) deposit (McLaughlin et al., 2008). About 100 to 120 ft thick in the Georgetown Quadrangle.

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene.