Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "lower Miocene"

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Calvert Formation

Tc

Gray to grayish-brown, clayey silt to silty clay interbedded with gray to light-gray silty to fine to coarse quartz sands. Discontinuous beds of shell are common in the sands and in the clayey silts. Found in the subsurface throughout Kent County. Interpreted to be a marine deposit. Rarely the surficial unit on the uplands in northwestern Kent County where the Columbia or Beaverdam Formations are absent. Outcrops are patchy and are too small to be shown on this map. Three major aquifers are found within the Calvert Formation in Kent County: the Frederica, Federalsburg, and Cheswold, from top to bottom, respectively (McLaughlin and Velez, 2006). Ranges up to 425 feet thick.

Fossil Sites In Delaware

Fossil sites near the C&D Canal

Delaware offers a few sites for fossil collectors, and the Chesapeake and Delaware Canal and the Pollack Farm are the best. Other locations throughout the state also offer good hunting grounds for fossil collectors. Just south of Dagsboro, where Route 113 crosses Pepper Creek, the collector can find young (less than 2 million year old) marine fossils from the Pleistocene Epoch. At the state sand and gravel pit just south of Middletown on Route 896, plant impressions from the Pleistocene may be found.

What is a fossil?

Tusk of Mammut americanum (American mastodon) discovered from the bottom of Delaware Bay after being caught in a scallop dredge. Pleistocene age.

If you think you may have found a Delaware dinosaur or any unusual fossil, the scientists at the Delaware Geological Survey at the University of Delaware, Newark campus would like to see it. It could provide important information on the geologic history of the First State.

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

B20 Stratigraphy of the Post-Potomac Cretaceous-Tertiary Rocks of Central Delaware

This Bulletin presents the subsurface stratigraphy of the post-Potomac Cretaceous and Tertiary rocks of the Atlantic Coastal Plain of central Delaware, between the Chesapeake and Delaware (C & D) Canal and Dover. Geophysical log correlations supported by biostratigraphic and lithologic data from boreholes in Delaware and nearby New Jersey provide the basis for the report. The stratigraphic framework presented here is important for identifying subsurface stratigraphic units penetrated by the numerous boreholes in this part of Delaware, particularly those rock units that serve as aquifers, because such knowledge allows for better prediction at ground-water movement and availability. Also, accurate stratigraphy is a prerequisite for interpreting the geologic history of the rocks and for the construction of maps that depict the structure and thickness of each unit.

B18 Clay and Clay-Size Mineral Composition of the Cretaceous-Tertiary Section, Test Well Je32-04, Central Delaware

B18 Clay and Clay-Size Mineral Composition of the Cretaceous-Tertiary Section, Test Well Je32-04, Central Delaware

This study complements Delaware Geological Survey Bulletin No. 17 and deals exclusively with clays and clay-size minerals. The cored section at the location of Je32-04 has been subdivided into 25 clay zones on the basis of major changes in trends and degree of crystallinity of clay minerals. The composition of clay minerals varies from zone to zone. These clay minerals have been identified: kaolinite, berthierine, chlorite, illite, smectite, chlorite/smectite, illite/smectite, glauconite/smectite, and glauconite pellets. Other minerals present in the section include: zeolites (clinoptilolite-heulandite), gypsum, and elemental sulfur.

B17 Geological Studies of Cretaceous and Tertiary Section, Test Well Je32-04, Central Delaware

B17 Geological Studies of Cretaceous and Tertiary Section, Test Well Je32-04, Central Delaware

A cored well 1,422 feet (433 meters) deep drilled two miles southeast of Dover is the basis for this integrated study of the lithology and paleontology of the Cretaceous-Tertiary section in central Delaware. The section is subdivided into lithostratigraphic, biostratigraphic, chronostratigraphic, and heavy mineral units. Data and results are presented on a common base in three plates.

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

Columbia sediments in the Middletown-Odessa area are composed of boulders, gravels, sands, silts and clays. These sediments are exposed in four gravel pits where their structures and textures were studied. Subsurface geology was interpreted on the basis of the well-log data from 40 holes drilled in the area of study. Columbia sediments were laid upon a surface made up of the greensands of the Rancocas Formation (Paleocene – Eocene age). The contact between the Rancocas and Columbia Formations is an erosional unconformity.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

Geologic History of the Delaware Coastal Plain

In Delaware, the oldest unit of the Atlantic Coastal Plain is the Potomac Formation. Sediment eroded from the Appalachian Mountains was deposited in rivers and swamps in a tropical climate along the margins of the forming ocean during the latter part of Early Cretaceous time, about 120 million years ago.

GM14 Geologic Map of Kent County, Delaware

GM14 Geologic Map of Kent County, Delaware

This map shows the surficial geology of Kent County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as flood-prone areas, to identify sand and gravel resources, and to support state, county, and local land-use and planning decisions.

GM13 Geologic Map of New Castle County, Delaware

GM13 Geologic Map of New Castle County, Delaware

This map shows the surficial geology of New Castle County, Delaware at a scale of 1:100,000. Maps at this scale are useful for viewing the general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues. This map, when combined with the subsurface geologic information, provides a basis for locating water supplies, mapping ground-water recharge areas, and protecting ground and surface water. Geologic maps are also used to identify geologic hazards, such as sinkholes and flood-prone areas, to identify sand and gravel resources, and for supporting state, county, and local land-use and planning decisions.

This page tagged with:

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

GM12 Geology of the Lewes and Cape Henlopen Quadrangles, Delaware

The surficial geology of the Lewes and Cape Henlopen quadrangles reflects the geologic history of the Delaware Bay estuary and successive high and low stands of sea levels during the Quaternary. The subsurface Beaverdam Formation was deposited as part of a fluvial-estuarine system during the Pliocene, the sediments of which now form the core of the Delmarva Peninsula. Following a period of glacial outwash during the early Pleistocene represented by the Columbia Formation found to the northwest of the map area (Ramsey, 1997), the Delaware River and Estuary developed their current positions. The Lynch Heights and Scotts Corners Formations (Ramsey, 1993, 1997, 2001) represent shoreline and estuarine deposits associated with high stands of sea level during the middle to late Pleistocene on the margins of the Delaware Estuary. In the map area, the Lynch Heights Formation includes relict spit and dune deposits at the ancestral intersection of the Atlantic Coast and Delaware Bay systems, similar in geomorphic position to the modern Cape Henlopen.

GM9 Geology of the Seaford Area, Delaware

GM9 Geology of the Seaford Area, Delaware

This map shows the distribution of geologic units found at or near land surface. These units support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water. Previous maps and reports covering the same of adjacent areas have focused on hydrogeology (Andres, 1994), surficial geology on a regional basis (Jordan, 1964, 1974; Owens and Denny, 1979, 1986; Denny et al., 1979; Ramsey and Schenck, 199), or subsurface geology (Hansen, 1981; Andres, 1986).

GM8 Geology of the Milford and Mispillion River Quadrangles, Delaware

Geology of the Milford and Mispillion River Quadrangles, Delaware

This map is the first detailed surficial geologic map in southern Kent and northern Sussex counties. Other maps covering the same or adjacent areas have focused on subsurface geology (Benson and Pickett, 1986), hydrogeology (Talley, 1982), or surficial geology on a regional basis (Jordan, 1964; Owens and Denny, 1979; Ramsey and Schenck, 1990). The purpose of this map is to show the distribution of geologic units found at or near the present land surface. These units are composed of the geologic materials that support agriculture and development, are mined for sand and gravel resources, and are the surface-to-subsurface pathway for water.