upper Pleistocene

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Delaware Bay Group

The Delaware Bay Group consists of transgressive deposits that were laid down along the margins of ancestral Delaware Bay estuaries during middle to late Pleistocene rises and highstands of sea level. The Delaware Bay Group was described in detail by Ramsey (1997). The Delaware Bay Group is comprised of the Lynch Heights Formation, the Scotts Corners Formation, and the Cape May Formation (undivided) in New Jersey.

RI62 The Cypress Swamp Formation, Delaware

The Cypress Swamp of Sussex County, Delaware, is underlain by a body of late Pleistocene- to Holocene-age unconsolidated sediments. They form a mappable geologic unit herein named the Cypress Swamp Formation. Deposits of the formation can be found outside the current boundaries of the Cypress Swamp and record the erosion and redistribution of older Pleistocene coastal and Pliocene sedimentary units.

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene.

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St.

Turtle Branch Formation

One to five feet of gray coarse sand and pebbles overlain by one to ten feet of tan to gray clayey silt to silty clay that is in turn overlain by three to five feet of fine to medium sand. Laterally, finer beds are less common away from Marshyhope Creek and the deposit is dominated by fine to medium sand with scattered beds of coarse to very coarse sand with pebbles. Sands are quartzose with some feldspar and laminae of opaque heavy minerals. Underlies a terrace with elevations ranging from 35 to 50 feet and is interpreted to be fluvial to estuarine in origin. Found in the Marshyhope Creek drainage basin in Kent County and more extensively along the Nanticoke drainage basin in Sussex County. Thickness ranges up to 20 feet closer to the valley of the Marshyhope and thins away from the river.

Lynch Heights Formation

Heterogeneous unit of light-gray to brown to light-yellowish brown, medium to fine sand with discontinuous beds of coarse sand, gravel, silt, fine to very fine sand, and organic-rich clayey silt to silty sand. Upper part of the unit commonly consists of fine, well-sorted sand. Small-scale cross-bedding within the sands is common. Some of the interbedded clayey silts and silty sands are burrowed. Beds of shell are rarely encountered. Sands are quartzose and slightly feldspathic, and typically micaceous where very fine to fine grained. Unit underlies a terrace parallel to the present Delaware Bay that has elevations between 50 and 30 feet. Interpreted to be a fluvial to estuarine unit of fluvial channel, tidal flat, tidal channel, beach, and bay deposits (Ramsey, 1997). Overall thickness ranges up to 50 feet.

Scotts Corners Formation

Heterogeneous unit of light-gray to brown to light-yellowish-brown, coarse to fine sand, gravelly sand and pebble gravel with rare discontinuous beds of organic-rich clayey silt, clayey silt, and pebble gravel. Sands are quartzose with some feldspar and muscovite. Commonly capped by one to two feet of silt to fine sandy silt. Laminae of opaque heavy minerals are common. Unit underlies a terrace parallel to the present Delaware River that has elevations less than 25 feet. Interpreted to be a transgressive unit consisting of swamp, marsh, estuarine channel, beach, and bay deposits. Climate during the time of deposition was temperate to warm temperate as interpreted from fossil pollen assemblages (Ramsey, 1997). Overall thickness of the unit rarely exceeds 20 feet.

What is a fossil?

If you think you may have found a Delaware dinosaur or any unusual fossil, the scientists at the Delaware Geological Survey at the University of Delaware, Newark campus would like to see it. It could provide important information on the geologic history of the First State.