Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "middle Pleistocene"

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

Map Scale: 
24.000

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

Nanticoke River Group

Qnrg

The Nanticoke River Group consists of the Turtle Branch and Kent Island Formations. The Nanticoke River Group consists of heterogeneous units of interbedded fine to coarse sand, clayey silt, sandy silt, and silty clay. Where the units are muddy, downstream of Seaford, the sequence consists of a lower fluvial to estuarine swamp to tidal stream deposits (coarse sand to gravelly sand with scattered organic-rich muddy beds) overlain by estuarine clayey silts and silty clays that contain rare to common Crassostrea (oyster) bioherms. The silts and clays are overlain by sands with clay laminae, to fine to coarse well-sorted, clean sand that are estuarne beach and eolian in origin. Upstream, the mud beds are rarer and restricted to the west side of streams and consist of organic rich clayey silt. Most of the stratigraphic section is dominated by clean, well-sorted sands.

Assawoman Bay Group

Qabg

The Assawoman Bay Group consists of the well-sorted sands, silts, and clays of the Omar, Ironshire, and Sinepuxent Formations found adjacent to and inland of the Atlantic Coast of Delaware and Maryland. These deposits in Delaware and Maryland were named from oldest to youngest: the Omar Formation (Jordan, 1962, 1964), the Ironshire Formation (Owens and Denny, 1979a), and the Sinepuxent Formation (Owens and Denny, 1979a).

Omar Formation

Qo

The Omar Formation was originally described (Jordan, 1962) as consisting of interbedded, gray to dark gray, quartz sands and silts with bedding ranging from a few inches to more than 10 feet thick. Thin laminae of clay are found within the fine, well-sorted sands. Silt mixed with sand generally contains some plant matter and where dark in color could be considered organic. Sands contain wood fragments, some of which are lignitic.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation. The Assawoman Bay Group, recognized inland of Delaware’s Atlantic Coast, is subdivided into the Omar Formation, the Ironshire Formation, and the Sinepuxent Formation. The Nanticoke River Group, found along the margins of the Nanticoke River and its tributaries, is subdivided into the Turtle Branch Formation (named herein) and the Kent Island Formation.

Delaware Bay Group deposits consist of bay-margin coarse sand and gravel that fine upward to silt and silty sand. Beds of organic-rich mud were deposited in tidal marshes. Near the present Atlantic Coast, the Delaware Bay Group includes organic-rich muds and shelly muds deposited in lagoonal environments.

Assawoman Bay Group deposits range from very fine, silty sands to silty clays with shells deposited in back-barrier lagoons, to fine to coarse, well-sorted sands deposited in barriers and spits.

Nanticoke River Group deposits consist of coarse sand and gravel that fine upward to silty clays. Oyster shells are found associated with the clays in the Turtle Branch Formation. Organic-rich clayey silts were deposited in swamps and estuaries. Well-sorted fine sands to gravelly sands were deposited on beaches and tidal flats on the flanks of the ancestral Nanticoke River and its tributaries.

The Lynch Heights, Omar, and Turtle Branch Formations are age-equivalent units associated with highstands of sea level,which occurred at approximately 400,000 and 325,000 yrs B.P. (MIS 11 and 9, respectively). The Scotts Corners, Ironshire, Sinepuxent, and Kent Island Formations are age-equivalent units associated with highstands of sea level, which occurred between 120,000 and 80,000 yrs B.P. (MIS 5e and 5a, respectively).

Number of Pages: 
50

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

Map Scale: 
24,000

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island. Placing the offshore data in geologic context is important for developing stratigraphic and geographic models for predicting the location of stratigraphic units found offshore that may yield sand suitable for beach nourishment. The units recognized onshore likely extend offshore to where they are truncated by younger units or by the present seafloor.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Number of Pages: 
47

Old College Formation

Qoc

Reddish-brown to brown clayey silt, silty sand to sandy silt, and medium to coarse quartz sand with pebbles (Ramsey, 2005). Rock fragments of mica or sillimanite quartzose schist are common sand fraction. At land surface, a gray to grayish-brown clayey silt is present. Sands are cross-bedded with laminae of muscovite or heavy minerals defining the cross-sets. Silty beds tend to be structureless, or in the gray clayey silt beds, heavily bioturbated by roots. No fossils other than pollen have been recovered. Pollen indicate a cold climate during deposition of the upper clayey silt unit (unpublished DGS data). Stratigraphic relationships indicate either slightly younger than or contemporaneous with the Columbia Formation. Ranges from 5 to 40 ft in thickness.

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

RI53 Geology of the Seaford Area, Delaware

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St. Marys, and Manokin formations occur in the shallow subsurface within 300 ft of land surface. The Choptank, St. Marys, and Manokin formations were deposited in progressively shallower water marine environments. The Beaverdam Formation records incision of underlying units and progradation of a fluvial-deltaic system into the map area. The geologic history of the Quaternary is marked by weathering and erosion of the surface of the Beaverdam and deposition of the Nanticoke deposits by the ancestral Nanticoke River. Depositional environments in the Nanticoke deposits include fresh water streams and ponds, estuarine streams and lagoons, and subaerial dunes.

Columbia Formation

Qcl

Yellowish- to reddish-brown, fine to coarse, feldspathic quartz sand with varying amounts of gravel. Typically cross-bedded with cross-sets ranging from a few inches to over three feet in thickness. Scattered beds of tan to reddish-gray clayey silt are common. In places, the upper 5 to 25 feet consists of grayish- to reddish-brown silt to very fine sand overlying medium to coarse sand. Near the base, clasts of cobble to small boulder size have been found in a gravel bed ranging from a few inches to three feet thick. Gravel fraction primarily quartz with lesser amounts of chert. Clasts of sandstone, siltstone and shale from the Valley and Ridge, and pegmatite, micaceous schist, and amphibolite from the Piedmont are also present. Fills a topographically irregular surface, is less than 50 feet thick, and is interpreted to be primarily a body of fluvial glacial outwash sediment (Jordan, 1964; Ramsey, 1997). Pollen indicate deposition in a cold climate during the middle Pleistocene (Groot and Jordan, 1999).

Turtle Branch Formation

Qtb

One to five feet of gray coarse sand and pebbles overlain by one to ten feet of tan to gray clayey silt to silty clay that is in turn overlain by three to five feet of fine to medium sand. Laterally, finer beds are less common away from Marshyhope Creek and the deposit is dominated by fine to medium sand with scattered beds of coarse to very coarse sand with pebbles. Sands are quartzose with some feldspar and laminae of opaque heavy minerals. Underlies a terrace with elevations ranging from 35 to 50 feet and is interpreted to be fluvial to estuarine in origin. Found in the Marshyhope Creek drainage basin in Kent County and more extensively along the Nanticoke drainage basin in Sussex County. Thickness ranges up to 20 feet closer to the valley of the Marshyhope and thins away from the river.

What is a fossil?

What is a fossil?

If you think you may have found a Delaware dinosaur or any unusual fossil, the scientists at the Delaware Geological Survey at the University of Delaware, Newark campus would like to see it. It could provide important information on the geologic history of the First State.

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

Columbia sediments in the Middletown-Odessa area are composed of boulders, gravels, sands, silts and clays. These sediments are exposed in four gravel pits where their structures and textures were studied. Subsurface geology was interpreted on the basis of the well-log data from 40 holes drilled in the area of study. Columbia sediments were laid upon a surface made up of the greensands of the Rancocas Formation (Paleocene – Eocene age). The contact between the Rancocas and Columbia Formations is an erosional unconformity.

Coastal Plain Rock Units (Stratigraphic Chart)

The geology of Delaware includes parts of two geologic provinces: the Appalachian Piedmont Province and the Atlantic Coastal Plain Province. The Piedmont occurs in the hilly northernmost part of the state and is composed of crystalline metamorphic and igneous rocks. This chart summarizes the age and distribution of the geologic units that are recognized in the state by the Delaware Geological Survey.

Geologic History of the Delaware Coastal Plain

In Delaware, the oldest unit of the Atlantic Coastal Plain is the Potomac Formation. Sediment eroded from the Appalachian Mountains was deposited in rivers and swamps in a tropical climate along the margins of the forming ocean during the latter part of Early Cretaceous time, about 120 million years ago.