Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Site content related to keyword: "Pleistocene"

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

GM20 Geologic Map of the Millsboro and Whaleysville Quadrangles, Delaware

The geological history of the surficial units of the Millsboro Quadrangle and
Delaware portion of the Whaleysville Quadrangle was the result of deposition of the
Beaverdam Formation during the late Pliocene and its subsequent modification by
erosion and deposition related to sea-level fluctuations during the Pleistocene and late
Pleistocene upland swamp and bog deposition. The geology at the land surface was then
further modified by periglacial activity that produced dune deposits and Carolina Bays in
the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

Number of Pages: 
1
Map Scale: 
1:24,000

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

DGS Geologic Map No. 20 (Millsboro and Whaleysville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles). The geological history of the surficial units of the Millsboro Quadrangle and Delaware portion of the Whaleysville Quadrangle was the result of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene and late Pleistocene upland swamp and bog deposition. The geology at the land surface was then further modified by periglacial activity that produced dune deposits and Carolina Bays in the map area. Surficial geologic mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 20 (Millsboro and Whaleysville Quadrangles) exists for use in conjunction with this dataset.

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

GM19 Geologic Map of the Frankford and Selbyville Quadrangles, Delaware

The geological history of the surficial units of the Frankford and Delaware
portion of the Selbyville Quadrangles was the result of deposition of the Beaverdam
Formation during the late Pliocene and its subsequent modification by erosion and
deposition related to sea-level fluctuations during the Pleistocene. The geology at the
land surface was then further modified by periglacial activity that produced dune deposits
in the map area. Surficial geologic mapping was conducted using field maps at a scale of
1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks
reflect detailed mapping using contours not shown on this map.

Number of Pages: 
1
Map Scale: 
24,000

DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

 DGS Geologic Map No. 19 (Frankford and Selbyville Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles). The geological history of the surficial units of the Frankford and Delaware portion of the Selbyville Quadrangles is that of deposition of the Beaverdam Formation during the late Pliocene and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology at the land surface was then further modified by periglacial activity that produced dune deposits in the map area. Mapping was conducted using field maps at a scale of 1:12,000 with 2 foot contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping related to contours not shown on this map. An additional dataset of datapoints used to generate rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 19 (Frankford and Selbyville Quadrangles) exists for use in conjunction with this dataset.

DGS Geologic Map No. 17 (Harbeson quadrangle) Dataset

DGS Geologic Map No. 17  (Harbeson quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map Series No. 17 (Harbeson quadrangle). The complex geologic history of the surficial units of the Harbeson Quadrangle is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

GM17 Geologic Map of the Harbeson Quadrangle, Delaware

The complex geologic history of the surficial units of the Harbeson Quadrangle is one of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology is further complicated by periglacial activity that produced dune deposits and Carolina Bays scattered throughout the map area.

Map Scale: 
24.000

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

DGS Geologic Map No. 16 (Fairmont Rehoboth Beach Quadrangles) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 16 (Fairmount and Rehoboth Beach quadrangles). The geologic history of the surficial units of the Fairmount and Rehoboth Beach quadrangles is that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition related to sea-level fluctuations during the Pleistocene. The geology reflects this complex history both onshore, in Rehoboth Bay, and offshore. Erosion during the late Pleistocene sea-level low stand and ongoing deposition offshore and in Rehoboth Bay during the Holocene rise in sea level represent the last of several cycles of erosion and deposition.

To facilitate the GIS community of Delaware and to release the geologic map of the Fairmount and Rehoboth Beach quadrangles with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 16. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

Cypress Swamp Formation

Qcs

The upper part of the Cypress Swamp Formation is a multi-colored, thinly bedded to laminated, quartzose fine sand to silty fine sand, with areally discontinuous laminae to thin beds of fine to coarse sand, sandy silt, clayey silt, organic silt, and peat. The lowermost 3 to 6 ft of the unit are commonly composed of thin beds of dark-colored, organic-rich, clayey silt with laminae to thin beds of fine sand and peat. Fine sand to fine sandy silt are present at the base of the unit in boreholes where the lower organic-rich beds are absent. Dark-colored, peaty, organic-rich silt and clayey silt with laminae of fine to medium sand as much as 4.5 ft thick are common within 5 ft of land surface, but may be absent in some locations. Colors are shades of brown, gray, and green where the unit contains visible organic matter, and orange, yellow, and red at shallow depths where the organic-rich beds are absent. Clay-sized minerals are a mixed suite that includes kaolinite, chlorite, illite, and vermiculite.

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

RI76 Stratigraphy, Correlation, and Depositional Environments of the Middle to Late Pleistocene Interglacial Deposits of Southern Delaware

Rising and highstands of sea level during the middle to late Pleistocene deposited swamp to nearshore sediments along the margins of an ancestral Delaware Bay, Atlantic coastline, and tributaries to an ancestral Chesapeake Bay. These deposits are divided into three lithostratigraphic groups: the Delaware Bay Group, the Assawoman Bay Group (named herein), and the Nanticoke River Group (named herein). The Delaware Bay Group, mapped along the margins of Delaware Bay, is subdivided into the Lynch Heights Formation and the Scotts Corners Formation. The Assawoman Bay Group, recognized inland of Delaware’s Atlantic Coast, is subdivided into the Omar Formation, the Ironshire Formation, and the Sinepuxent Formation. The Nanticoke River Group, found along the margins of the Nanticoke River and its tributaries, is subdivided into the Turtle Branch Formation (named herein) and the Kent Island Formation.

Delaware Bay Group deposits consist of bay-margin coarse sand and gravel that fine upward to silt and silty sand. Beds of organic-rich mud were deposited in tidal marshes. Near the present Atlantic Coast, the Delaware Bay Group includes organic-rich muds and shelly muds deposited in lagoonal environments.

Assawoman Bay Group deposits range from very fine, silty sands to silty clays with shells deposited in back-barrier lagoons, to fine to coarse, well-sorted sands deposited in barriers and spits.

Nanticoke River Group deposits consist of coarse sand and gravel that fine upward to silty clays. Oyster shells are found associated with the clays in the Turtle Branch Formation. Organic-rich clayey silts were deposited in swamps and estuaries. Well-sorted fine sands to gravelly sands were deposited on beaches and tidal flats on the flanks of the ancestral Nanticoke River and its tributaries.

The Lynch Heights, Omar, and Turtle Branch Formations are age-equivalent units associated with highstands of sea level,which occurred at approximately 400,000 and 325,000 yrs B.P. (MIS 11 and 9, respectively). The Scotts Corners, Ironshire, Sinepuxent, and Kent Island Formations are age-equivalent units associated with highstands of sea level, which occurred between 120,000 and 80,000 yrs B.P. (MIS 5e and 5a, respectively).

Number of Pages: 
50

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

DGS Geologic Map No. 15 (Georgetown Quadrangle) Dataset

This vector data set contains the rock unit polygons for the surficial geology in the Delaware Coastal Plain covered by DGS Geologic Map No. 15 (Geologic Map of the Georgetown Quadrangle, Delaware). The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit but is thought to be between late Pliocene to early Pleistocene in age. Refer to Ramsey, 2010 (DGS Report of Investigations No. 76) for details regarding the stratigraphic units.

To facilitate the GIS community of Delaware and to release the geologic map of the Georgetown Quadrangle with all cartographic elements (including geologic symbology, text, etc.) in a form usable in a GIS, we have released this digital coverage of DGS Geological Map 15. The update of earlier work and mapping of new units is important not only to geologists, but also to hydrologists who wish to understand the distribution of water resources, to engineers who need bedrock information during construction of roads and buildings, to government officials and agencies who are planning for residential and commercial growth, and to citizens who are curious about the bedrock under their homes. Formal names are assigned to all rock units according to the guidelines of the 1983 North American Stratigraphic Code (NACSN, 1983).

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

GM15 Geologic Map of the Georgetown Quadrangle, Delaware

The geologic history of the surficial geologic units of the Georgetown Quadrangle is primarily that of deposition of the Beaverdam Formation and its subsequent modification by erosion and deposition of younger stratigraphic units. The age of the Beaverdam Formation is uncertain due to the lack of age-definitive fossils within the unit. Stratigraphic relationships in Delaware indicate that it is no older than late Miocene and no younger than early Pleistocene. Regional correlations based on similarities of depositional style, stratigraphic position, and sediment textures suggest that it is likely late Pliocene in age; correlative with the Bacons Castle Formation of Virginia (Ramsey, 1992, 2010).

Map Scale: 
24,000

MS6 Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Cross Section of Pliocene and Quaternary Deposits Along the Atlantic Coast of Delaware

Exploration for sand resources for beach nourishment has led to an increase in the amount of geologic data available from areas offshore Delaware's Atlantic Coast. These data are in the form of cores, core logs, and seismic reflection profiles. In order to provide a geologic context for these offshore data, this cross section has been constructed from well and borehole data along Delaware's Atlantic coastline from Cape Henlopen to Fenwick Island. Placing the offshore data in geologic context is important for developing stratigraphic and geographic models for predicting the location of stratigraphic units found offshore that may yield sand suitable for beach nourishment. The units recognized onshore likely extend offshore to where they are truncated by younger units or by the present seafloor.

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

RI75 Stratigraphy and Correlation of the Oligocene to Pleistocene Section at Bethany Beach, Delaware

The Bethany Beach borehole (Qj32-27) provides a nearly continuous record of the Oligocene to Pleistocene formations of eastern Sussex County, Delaware. This 1470-ft-deep, continuously cored hole penetrated Oligocene, Miocene, and Pleistocene stratigraphic units that contain important water-bearing intervals. The resulting detailed data on lithology, ages, and environments make this site an important reference section for the subsurface geology of the region.

Number of Pages: 
47

RI62 The Cypress Swamp Formation, Delaware

RI62 The Cypress Swamp Formation, Delaware

The Cypress Swamp of Sussex County, Delaware, is underlain by a body of late Pleistocene- to Holocene-age unconsolidated sediments. They form a mappable geologic unit herein named the Cypress Swamp Formation. Deposits of the formation can be found outside the current boundaries of the Cypress Swamp and record the erosion and redistribution of older Pleistocene coastal and Pliocene sedimentary units.

RI55 Geology of the Milford and Mispillion River Quadrangles

RI55 Geology of the Milford and Mispillion River Quadrangles

Investigation of the Neogene and Quaternary geology of the Milford and Mispillion River quadrangles has identified six formations: the Calvert, Choptank, and St. Marys formations of the Chesapeake Group, the Columbia Formation, and the Lynch Heights and Scotts Comers formations of the Delaware Bay Group. Stream, swamp, marsh, shoreline, and estuarine and bay deposits of Holocene age are also recognized. The Calvert, Choptank, and St. Marys formations were deposited in inner shelf marine environments during the early to late Miocene. The Columbia Formation is of fluvial origin and was deposited during the middle Pleistocene prior to the erosion and deposition associated with the formation of the Lynch Heights Formation. The Lynch Heights Formation is of fluvial and estuarine origin and is of middle Pleistocene age. The Scotts Corners Formation was deposited in tidal, nearshore, and estuarine environments and is of late Pleistocene age. The Scotts Corners Formation and the Lynch Heights Formation are each interpreted to have been deposited during more than one cycle of sea-level rise and fall. Latest Pleistocene and Holocene deposition has occurred over the last 11,000 years.

RI53 Geology of the Seaford Area, Delaware

RI53 Geology of the Seaford Area, Delaware

This report supplements the map "Geology of the Seaford Area, Delaware" (Andres and Ramsey, 1995). The map portrays surficial and shallow subsurface stratigraphy and geology in and around the Seaford East and Delaware portion of the Seaford West quadrangles. The Quaternary Nanticoke deposits and Pliocene Beaverdam Formation are the primary lithostratigraphic units covering upland surfaces in the map area. Recent swamp, alluvial, and marsh deposits cover most of the floodplains of modern streams and creeks. The Miocene Choptank, St. Marys, and Manokin formations occur in the shallow subsurface within 300 ft of land surface. The Choptank, St. Marys, and Manokin formations were deposited in progressively shallower water marine environments. The Beaverdam Formation records incision of underlying units and progradation of a fluvial-deltaic system into the map area. The geologic history of the Quaternary is marked by weathering and erosion of the surface of the Beaverdam and deposition of the Nanticoke deposits by the ancestral Nanticoke River. Depositional environments in the Nanticoke deposits include fresh water streams and ponds, estuarine streams and lagoons, and subaerial dunes.

What is a fossil?

What is a fossil?

If you think you may have found a Delaware dinosaur or any unusual fossil, the scientists at the Delaware Geological Survey at the University of Delaware, Newark campus would like to see it. It could provide important information on the geologic history of the First State.

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

B14 Hydrology of the Columbia (Pleistocene) Deposits of Delaware: An Appraisal of a Regional Water-Table Aquifer

The Columbia (Pleistocene) deposits of Delaware form a regional water-table aquifer, which supplies about half the ground water pumped in the State. The aquifer is composed principally of sands which occur as channel fillings in northern Delaware and as a broad sheet across central and southern Delaware. The saturated thickness of the aquifer ranges from a few feet in many parts of northern Delaware to more than 180 feet in southern Delaware. Throughout 1,500 square miles of central and southern Delaware (75 percent of the State's area), the saturated thickness ranges from 25 to 180 feet and the Columbia deposits compose all or nearly all of the water-table aquifer.

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

B13 Geology, Hydrology, and Geophysics of Columbia Sediments in the Middletown-Odessa Area, Delaware

Columbia sediments in the Middletown-Odessa area are composed of boulders, gravels, sands, silts and clays. These sediments are exposed in four gravel pits where their structures and textures were studied. Subsurface geology was interpreted on the basis of the well-log data from 40 holes drilled in the area of study. Columbia sediments were laid upon a surface made up of the greensands of the Rancocas Formation (Paleocene – Eocene age). The contact between the Rancocas and Columbia Formations is an erosional unconformity.