upper Holocene

GM26 Geologic Map of the Cecilton and Middletown Quadrangles, Delaware

Mapping was conducted using field maps at a scale of 1:12,000 with 2-ft contours. Stratigraphic boundaries drawn at topographic breaks reflect detailed mapping using contours not shown on this map. Most stratigraphic units mapped in stream valleys are projected from subsurface data. Except for a few erosional bluffs, these units are covered by colluvium. This map supersedes Geology of the Middletown-Odessa Area, Delaware: Delaware Geological Survey Geologic Map Series No. 2 (Pickett and Spoljaric, 1971).

GM25 Geologic Map of Offshore Delaware

Delineation of map units is based on sediment-core descriptions (e.g., texture, color, and composition) from 469 locations and seafloor morphology, which was assessed from a seamless NOAA/USGS topo-bathymetric model (Pendleton et al., 2014).

OFR52 Results of Groundwater Flow Simulations In the East Dover Area, Delaware

In 2015, staff of the Water Supply Section of the Delaware Department of Natural Resources and Environmental Control (DNREC) informed the DGS of their concerns about overpumping of the unconfined Columbia aquifer in an area east of Dover (Figure 1). In this area, the City of Dover’s Long Point Road Wellfield (LPRW) and numerous irrigation systems pump water from the shallow Columbia aquifer.

RI81 Characterization of Tidal Wetland Inundation in the Murderkill Estuary

A parameterization of tidal marsh inundation was developed for the 1,200 hectares of tidal marsh along the 12-km reach of the tidal Murderkill River between Frederica and Bowers Beach in Kent County, Delaware. A parsimonious modeling approach was used that bridges the gap between the simple and often used “bathtub model” (instantaneous inundation based on tides in Delaware Bay), and the more complex modeling of shallow overland that results in the wetting and drying of tidal marshes.

GM24 Geologic Map of the Millington, Clayton and Smyrna Quadrangles, Delaware

The geological history of the surficial units of the Clayton, Smyrna, and the Delaware portion of the Millington Quadrangles are the result of deposition of the Beaverdam Formation and its modification by erosion and deposition of the Columbia Formation during the early Pleistocene. These units were then modified by the Lynch Heights and Scotts Corners Formations as a result of sea-level fluctuations during the middle to late Pleistocene. The geology is further complicated by periglacial activity that produced Carolina Bay deposits in the map area, which modified the land surface.

OFR50 Database of Quaternary Coastal Geochronologic Information for the Atlantic and Pacific Coasts of North America (additional information for sites in Peru and Chile)

Open-File Report 50 presents and describes a database of geochronological information for coastal deposits of the US Atlantic and Pacific coasts, as well as for sites from the Pacific coast of South America. This database represents a synthesis of nearly forty years of study conducted by John F. Wehmiller and students in the Department of Geological Sciences, University of Delaware, as well as many collaborating colleagues.