Share

DGS Annual Report

DGS Annual Report of Programs and Activities.

Click here to download!

USGS Newsroom

Syndicate content USGS
News Releases
Updated: 4 hours 22 min ago

Winners Announced in Visualize Your Water High School Citizen Science Challenge

Thu, 04/21/2016 - 11:00
Summary: In January 2016, U.S. Geological Survey and the U.S. Environmental Protection Agency challenged high school students in 13 states to create compelling and innovative visualizations of nutrient data from open government data sources. 

Contact Information:

Jon Campbell ( Phone: 703-648-4180 ); Karl Haase ( Phone: 703-648-5818 );



In January 2016, U.S. Geological Survey and the U.S. Environmental Protection Agency challenged high school students in 13 states to create compelling and innovative visualizations of nutrient data from open government data sources. 

Students from across the United States participated in the challenge, demonstrating their creativity and commitment to environmental stewardship. For the winning visualizations, students effectively used geographic information systems software (GIS) and water quality datasets to describe nutrient pollution in their local watersheds in innovative ways. 

Plant nutrients can be valuable in agricultural and urban settings, but too much at the wrong place or time will produce algal blooms, hypoxia, and other nutrient-related water quality issues that are particularly acute in the Great Lakes Basin and Chesapeake Bay Watershed. 

Today we are announcing the winners of the challenge. 

National Grand Prize
Understanding Eutrophication in the Chesapeake Bay
Washington-Lee High School; Arlington, Va.

Chesapeake Bay Regional Prize
Nutrient Pollution, the Bay’s Biggest Threat
Poolesville High School; Poolesville, Md.

Great Lakes Regional Prize
Algae Affliction of Lake Erie
Father Gabriel Richard High School; Ann Arbor, Mich.

National Geographic Prize
Eutrophication in the Chesapeake Bay: Fertilizer and Manure

Honorable Mention 
The Chesapeake Bay: A National Treasure in Trouble

Honorable Mention 
The Bonds of Water

The National Grand Prize winner is being awarded $2,500 and an opportunity to attend the Esri Education Conference in San Diego, CA in June. The Chesapeake Bay and Great Lakes Regional Prize Winners are each being awarded $2,500. The National Geographic Prize winner is receiving a copy of the National Geographic Atlas of the World. All six winning visualizations will be published in Esri's 2017 Mapping the Nation book.

The Visualize Your Water Challenge is part of the broader work of the Challenging Nutrients Coalition. The coalition was formed in 2013 when the White House Office of Science and Technology Policy convened a group of federal agencies, universities, and non-profit organizations to seek innovative ways to address nutrient pollution. This challenge built on the activities of the Open Water Data Initiative, which works in conjunction with the President’s Climate Data Initiative, to further integrate existing water datasets and make them more accessible to innovation and decision making. 

Visualize Your Water involved students analyzing data and creating maps using online GIS software. In conjunction with President Obama's ConnectED Initiative supporting digital learning for every student in America, any US K-12 school can receive an ArcGIS Online school account for free from Esri.

The winners are being announced during National Environmental Education Week, a nationwide celebration of environmental education.

The GIS-based entry The Chesapeake Bay: A National Treasure in Trouble claims Honorable Mention in the Visualize Your Water high school citizen science challenge.

Most Wind Towers in Southern Great Plains Are Low Risk to Sandhill Cranes

Wed, 04/20/2016 - 13:47
Summary: Sandhill Cranes fly in close proximity to wind turbines near Horicon National Wildlife Refuge in east-central Wisconsin, but to date no crane mortality has been associated with turbines in this area. Sandhill Crane (Grus canadensis) The current placement of wind energy towers in the central and southern Great Plains may have relatively few negative effects on sandhill cranes wintering in the region, according to a U.S. Geological Survey study published today.

Contact Information:

Marisa Lubeck ( Phone: 303-526-6694 );



Sandhill Cranes fly in close proximity to wind turbines near Horicon National Wildlife Refuge in east-central Wisconsin, but to date no crane mortality has been associated with turbines in this area. Sandhill Crane (Grus canadensis)

The current placement of wind energy towers in the central and southern Great Plains may have relatively few negative effects on sandhill cranes wintering in the region, according to a U.S. Geological Survey study published today.

Midcontinental sandhill cranes are important to sporting and tourism industries in the Great Plains, an area where wind energy development recently surged. Scientists with the USGS compared crane location data from the winters of 1998-2007 with current wind tower sites in Texas, Oklahoma, Kansas and New Mexico prairies. Findings showed only a seven percent overlap between cranes and towers, and that most towers have been placed in areas not often used by cranes during the winter.

“Great Plains wetlands are critical to preserving valuable sandhill crane populations,” said USGS scientist Aaron Pearse, the study’s lead author. “Our findings can help managers minimize risks of future wind energy development to cranes by highlighting potentially hazardous locations.”

Using data from cranes tagged with satellite transmitters, the scientists estimated wintering crane distributions and habitat selection behaviors prior to and during wind tower construction, which began in 1999 but surged from 2004-2013. They then compared the early estimates with post-construction bird behaviors and current tower locations.

“Although about 50 percent of cranes in our study used locations that had wind towers nearby – within 10 kilometers, or about 6.2 miles – there were few instances in which high densities of cranes and high densities of towers coincided,” Pearse said.

The study further showed: 

  • A modest seven percent overlap between study areas visited by cranes during the winters of 1998-2004 and areas with wind towers constructed during 1999-2013;
  • When they spent time near wind towers, the wintering cranes maintained an average distance of 6.5 kilometers, or about four miles, from the towers;
  • Only five percent of wind towers in the Texas High Plains have been constructed in locations identified as highly preferred crane winter habitat; and
  • Wintering cranes generally selected wetlands or upland areas near wetland basins.

Eighty percent of the midcontinent sandhill crane population resides in the central and southern Great Plains for up to half of the year. Potential threats of wind towers to cranes include collisions and avoidance of areas near towers, which reduces available roosting and foraging habitat.

For more information about USGS sandhill crane research, please visit the USGS Northern Prairie Wildlife Research Center website

How Climate Change Might Affect Polar Bears' Bodies

Wed, 04/20/2016 - 13:00
Summary: PORTLAND, Ore. — You really are what you eat. That’s the taking-off point for a new polar bear study, conducted by U.S. Geological Survey researchers with an assist from the Oregon Zoo — and published this week in the journal Physiological and Biochemical Zoology. Zoo polar bears help scientists understand effects of Arctic bears' shifting diets

Contact Information:

Paul  Laustsen, USGS ( Phone: 650-329-4046 ); Hova Najarian, Oregon Zoo ( Phone: 503-220-5714 );



PORTLAND, Ore. — You really are what you eat. That’s the taking-off point for a new polar bear study, conducted by U.S. Geological Survey researchers with an assist from the Oregon Zoo — and published this week in the journal Physiological and Biochemical Zoology.

As sea ice shifts in the Arctic, scientists have noted a corresponding shift in polar bears’ diets. In Western Hudson Bay, for example, sea-ice loss has been associated with declines in the consumption of benthic-feeding prey, such as bearded seals. In East Greenland, polar bears have increased consumption of hooded seals and decreased consumption of their more typical prey, ringed seals. 

The degree to which these types of changes are common throughout polar bear populations, and their implications on bear health, are not well understood. To determine whether bears are changing their diet in these remote Arctic regions, scientists are gathering baseline data from a couple of animals closer to home — Tasul and Conrad, two resident polar bears at the Oregon Zoo. 

“Science can sometimes be a slow process,” said Amy Cutting, who oversees the zoo’s North America and marine life areas. “And climate change is happening rapidly. Anything we can do to quickly gain information about how polar bears respond will help managers make critical decisions for protecting them in the wild.” 

Using a handy chemical tool called “stable isotopes” — which include the carbon and nitrogen atoms that exist in every living thing — researchers from the U.S. Geological Survey are revealing how polar bears, which currently boast the highest-fat diets of all the animal kingdom, process different types of meals. 

“This new tool is allowing us to use hair and blood samples to discover whether polar bear diets have changed since the ’80s, when we began keeping records,” said Dr. Karyn Rode, the USGS wildlife biologist who led the study. 

This is possible, Rode says, because when a polar bear eats a meal of seal, whale or walrus, it takes on that organism’s isotope load as well. 

These chemical markers can then be detected in the bears’ own tissue samples, such as their blood or hair, which grows at a predictable rate and reveals the bear’s past “dietary signature” — or what and where their meals were eaten, she says. 

But it’s not quite that simple. 

“It’s not just that a 50 percent salmon diet shows up as 50 percent salmon in the body,” Rode said. “Some gets routed toward body fat, some gets stored and some is transformed directly to energy. I need to understand how the bear body processes food before I can understand how different diets may affect them.” 

During data collection, the zoo bears participated in what zoo staff dubbed a “surf and turf” experiment — switching between marine and terrestrial foods. By comparing this new data to USGS archive samples from the Chukchi and Southern Beaufort Sea bear populations over the past 25 years, Rode and her team may reveal the effects of this new meal diversity on polar bears.

“We’re hoping to study their diets over time to explain potential changes in resource use as a result of climate-related changes in this sensitive Arctic ecosystem,” said USGS research biologist Craig Stricker. 

This project, conducted by the USGS Polar Bear Team, is part of the USGS’s Changing Arctic Ecosystems research on the effects of climate change on polar bears.

The zoo is a service of Metro and is dedicated to its mission of inspiring the community to create a better future for wildlife. Committed to conservation, the zoo is currently working to save endangered California condors, Oregon silverspot and Taylor’s checkerspot butterflies, western pond turtles and Oregon spotted frogs. Other projects focused on saving animals from extinction include studies on Asian elephants, polar bears, orangutans and cheetahs. 

Support from the Oregon Zoo Foundation enhances and expands the zoo’s efforts in conservation, education and animal welfare. Members, donors and corporate and foundation partners help the zoo make a difference across the region and around the world.

The zoo opens at 9 a.m. daily and is located five minutes from downtown Portland, just off Highway 26. The zoo is also accessible by MAX light rail line. Visitors who travel to the zoo via MAX receive $1.50 off zoo admission. Call TriMet Customer Service, 503-238-RIDE (7433), or visit trimet.org for fare and route information.

Mystery Solved: Traits Identified for Why Certain Chemicals Reach Toxic Levels in Food Webs

Wed, 04/20/2016 - 10:00
Summary: This model provides a new global tool for screening existing and new organic chemicals for their biomagnification potential. Hot colors (red, orange and yellow) indicate a high probability of biomagnification and cool colors (greens, blues) indicate a low probability of biomagnification.(USGS) Researchers have figured out what makes certain chemicals accumulate to toxic levels in aquatic food webs. And, scientists have developed a screening technique to determine which chemicals pose the greatest risk to the environment.

Contact Information:

Catherine Puckett ( Phone: 352-377-2469 ); Heidi Koontz ( Phone: 303-202-4763 );



This model provides a new global tool for screening existing and new organic chemicals for their biomagnification potential. Hot colors (red, orange and yellow) indicate a high probability of biomagnification and cool colors (greens, blues) indicate a low probability of biomagnification.(USGS)

Researchers have figured out what makes certain chemicals accumulate to toxic levels in aquatic food webs. And, scientists have developed a screening technique to determine which chemicals pose the greatest risk to the environment.

According to the study led by the U.S. Geological Survey, two traits were identified that indicate how chemicals can build up and reach toxic levels:  how easily a chemical is broken down or metabolized by an organism and the chemical’s ability to dissolve in water.

These traits account for how most chemicals concentrate, or biomagnify, in ever-higher levels as one goes up the food chain from its base to its top predators, such as fish, people, or polar bears. Chemicals that have the ability to biomagnify, such as DDT, can have adverse effects on human and wildlife health and the environment. 

“Chemical manufacturers and regulators can use this information to reduce the risks of harmful chemical exposures to ecosystems and the fish, wildlife and people who live in them,” said David Walters, a USGS research ecologist and lead author of the study. “By screening for these two characteristics, we can identify chemicals that pose the greatest risk of the thousands that are on the market and for new ones being developed.”

The study found that poorly metabolized compounds tend to remain in animal tissues and are passed up the food chain in higher, more toxic amounts as one animal is eaten by another and so on.  Likewise, compounds that don’t dissolve well in water accumulate in animal fats, ultimately exponentially increasing in top predators.

Beyond these chemical properties, the researchers found that certain ecosystems and food webs are more vulnerable to biomagnification than others. For example, extremely high biomagnification occurred in ocean food webs that include birds and mammals. The authors noted this may be in part due to longer food chains in these ecosystems  that is, many levels and kinds of predators - and because warm-blooded animals need to consume more food than do cold-blooded animals like fish. 

Building upon these results, the researchers developed a model of biomagnification based upon how chemicals metabolize and dissolve in water. The likelihood that a chemical would biomagnify was highest – nearly 100 percent -- for slowly metabolized compounds such as chlorinated flame retardants and PCBs, or polychlorinated biphenyls, regardless of their solubility in water.

We need to learn from our previous mistakes and have more informed and responsible design and use of chemicals in the environment,” said Karen Kidd, a Canada Research Chair at University of New Brunswick Saint John and co-author of the study. “Our global review provides a straightforward approach for reducing the use of chemicals with the properties to concentrate through food webs.  This is a critical step for decreasing risks for humans and wildlife from potentially harmful chemical exposures in foods.”

Since the emergence of DDT as a global problem for wildlife in the 1950s and 60s, science has kept a close watch on the behavior of persistent organic pollutants, especially chemicals that may concentrate through food webs to potentially toxic levels in wildlife and humans. Many are resistant to environmental degradation and remain in the environment for decades. While biomagnification can be measured in the laboratory, said Walters, it is best determined by measuring how much the chemical increases with each step in the food chain in wild animal populations.

USGS research partners in this study, “Trophic Magnification of Organic Chemicals: A Global Synthesis,” include the Toxicology Centre at the University of Saskatchewan, the Canadian Rivers Institute at the University of New Brunswick, and Environment and Climate Change Canada. The study is published in Environmental Science and Technology.

This research was supported by the USGS Ecosystems and Environmental Health Mission Areas, the U.S. Environmental Protection Agency's Great Lakes Research Initiative, and the Canada Research Chair and Natural Sciences and Engineering Research Council (NSERC) of Canada programs.

State of the Survey

Thu, 04/07/2016 - 12:41
Summary: USGS Director Suzette Kimball testified about the priorities and capabilities of the USGS today before the Senate Energy and Natural Resources Committee. Her written remarks follow: Readout from Director Kimball’s Testimony at the Senate Energy and Natural Resources Committee

Contact Information:

Anne Berry Wade ( Phone: 703-648-4483 ); David Hebert ( Phone: 703-648-4474 );



USGS Director Suzette Kimball testified about the priorities and capabilities of the USGS today before the Senate Energy and Natural Resources Committee. Her written remarks follow:

Chairman Murkowski and Ranking Member Cantwell, members of the committee, thank you very much for inviting me to testify today. I am excited for this opportunity to share some of my views on the state of the USGS and its mission. I would like to start this conversation with some history.

In 1879, Congress passed legislation that merged several Federal scientific and mapping surveys. We call this statute our Organic Act, because it inaugurated the U.S. Geological Survey (USGS). From the beginning, the mission of this combined endeavor was not only to map the West and locate resources, but also to push the boundaries of science. USGS scientists, for almost 140 years now, have pursued that mission with an uncommon dedication. I am honored to be their 16th Director and cognizant of the responsibility that the President, the Congress, and this committee have entrusted to me.

Not only is the USGS older than 12 of the States, it is also the forbearer of several important government agencies, including the Bureau of Ocean Energy Management and the Bureau of Reclamation. In the time since we were established, technology and Earth science have evolved and we have evolved along with it, to meet the scientific needs of the Nation.  For example, with the increase in global demand for critical mineral commodities, USGS has focused on conducting research to understand geologic processes that have concentrated known mineral resources at specific localities in the Earth’s crust and to estimate or assess quantities, qualities and areas of undiscovered mineral resources, or potential future supply.  We have increased resources toward the National Geospatial program, earthquake early warning, volcano monitoring and the national streamgage network. USGS has also focused our activities on fulfilling statutory authorities, most recently by addressing national water availability and use through the SECURE Water Act.

Our evolution is evident, as you noted two years ago, Madame Chairman, in a resolution recognizing the anniversary of the massive earthquake that occurred in the Prince William Sound region of Alaska on March 27, 1964 (the Good Friday Earthquake). USGS science in response to that event helped confirm the theory of plate tectonics, fundamentally changing earthquake science.  Shortly thereafter, in 1966, Bill Pecora, our 8th Director, advocated for the use of satellites to study natural resources. This innovation led to Landsat and opened the age of Earth observation from space.

In 1995, Congress merged biologists from the National Biological Survey with the USGS, helping us to become an integrated Earth science agency. As scientific and technological advances have revealed the complexity of the issues we face, the value of bringing Earth science disciplines together has become ever more apparent. Today’s challenges demand the innovation made possible by integrating the full breadth of USGS capabilities. 

One example that illustrates the value of USGS’s diverse scientific capabilities is our leadership in understanding methylation processes of mercury. Mercury is a toxin that can build up in the food chain, becoming deadly to humans. It is most dangerous after undergoing a specific chemical change, methylation. Our geological expertise allows us to understand how and where methylation occurs, and our biological expertise allows us to understand how it affects plants, animals, and humans. Combining the talents, tools, and methods from these two disciplines is necessary to correctly assess methylmercury and its potential impacts.

I want to stress that we rely on numerous partnerships to pursue our scientific mission. The state geological surveys, universities, municipal governments, other Federal agencies, and foreign governments all count as critical partners of the USGS. As you may know, our budget is leveraged resulting in, approximately, an additional half a billion dollars contributed by our partners, especially State governments and other Federal agencies. We see this as an indication of their confidence in and support for our work. Such partnerships also have made it possible, for example, to create and publish a whole-lifecycle mining report, that offers industry and regulators guidance on how to site, develop, and close a mine with resource and environmental implications taken into account. In the future, we plan to do similar work for energy resources.

The USGS works closely with other Interior bureaus such as the Fish and Wildlife Service, the National Park Service, and the Bureau of Land Management, as well as other Federal agencies such as the Environmental Protection Agency, the National Aeronautics and Space Administration, the U.S. Army Corps of Engineers, and the National Oceanic and Atmospheric Administration. Rather than duplicate those agencies’ missions, the USGS complements their research activities and contributes sound science for their decisionmaking. We are pleased to know that Congress looks to us, too, because researchers from the USGS are here hundreds of times a year meeting with you and your offices.

While I am proud of our integrated approach to problem solving, drawing on geological and biological science, remote sensing, epidemiology, ecology, or any of the myriad disciplines that constitute Earth science, innovation is the characteristic I most hope to nurture during my tenure in this office. While the Bureau has often been at the forefront of innovative research and science, we must take advantage of technological change and respond to emerging scientific directions to meet our full potential.

Today USGS labs are spearheading novel technologies.  For example we are using eDNA to monitor the spread of Asian carp.  We also work on other invasive species such as zebra mussels, brown tree snakes, and cheatgrass. Through our groundbreaking work on white-nosed syndrome, avian influenza and other wildlife diseases, the Bureau has become known as “the CDC of wildlife,” and is on the front lines of possible future epidemics.

One of our ongoing pursuits is 21st century mapping. In Alaska, we are harnessing our partnerships with the State and the University of Alaska, along with the technology of interferometric synthetic aperture radar, or ifsar, to produce modern geospatial information for the State. Back in the lower 48, high resolution elevation data are being collected using lidar technology by a coalition of Federal, State and private industry partners, to inform decisionmaking and enable newfound abilities like mapping and even forecasting landslides. The landslide tragedy at Oso, Washington, in 2014, not unlike the Good Friday Earthquake, pushes us to look farther, aim higher, and complete a scientific achievement worthy of the investment and trust placed in us by the American people.

Speaking of hazards, the USGS has long led Federal research into various geologic hazards and we are pressing forward on innovative approaches in this area, too. Along the West Coast, we are establishing, in cooperation with states, universities, and philanthropic partners, a state-of-the-art earthquake early warning system. This system could readily be expanded to Alaska and other high-risk regions of the country. We are also applying advanced telemetry and remote sensing technologies, making a volcano early warning system a reality. For many of your constituents, these are hazards they live with every day and they are also threats to the Nation as a whole.

The unknown unknowns of Earth science motivate us to advance our understanding of the natural world. As we look toward the future I see challenges where we are positioned to lead, all of which I have touched on: water security and availability, tools for protection from and response to natural hazards, assessment of critical minerals, forecasting and preventing biological threats, and creating the next generation of mapping tools and technology.

I have every confidence that the USGS will continue to meet these challenges, and I am heartened by a recent survey of marine and coastal scientists and managers which found the USGS to be the most credible Federal science agency. This is not a reason to boast, but a calling to meet such high expectations.

The mission of the USGS in the 21st century will not only be to locate natural resources for the benefit of the Nation, but to find ways of exploiting those resources sustainably so that our prosperity is not fleeting or fragile. For example, we are researching microbial production of natural gas, which may someday make it possible harness the energy of coal resources while avoiding many of the environmental costs traditionally associated with it. It is the job of the USGS, working with our partners, to help bring that future to fruition.

On behalf of the approximately 8,000 employees of the USGS, thank you again for inviting me here today. I would be happy to answer any questions you have.

New Maps for Texas and Oklahoma Released

Thu, 04/07/2016 - 09:30
Summary: New US Topo maps for Texas and Oklahoma are now available in the USGS Store for free download. One of the main improvements is the inclusion of the U.S. Census Bureau’s Topologically Integrated Geographic Encoding and Referencing (TIGER) road data. Updated US Topo maps for Texas and Oklahoma available for download; add Census Bureau road data, wetlands layer and select trails

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Larry  Moore ( Phone: 303-202-4019 );



New US Topo maps for Texas and Oklahoma are now available in the USGS Store for free download. One of the main improvements is the inclusion of the U.S. Census Bureau’s Topologically Integrated Geographic Encoding and Referencing (TIGER) road data.

“The US Topo digital maps are a great public resource to provide authoritative, robust maps to emergency management field personnel and first responders when response time matters”, said Michael Ouimet, Critical Information Systems Manager for the Texas Division of Emergency Management. “Our agency deployed the US Topo digital maps to our field personnel across the state.”

Other important additions to the new US Topo maps for Texas and Oklahoma are the integration of wetlands layers using data from the U.S. Fish & Wildlife Service National Wetlands Inventory, along with the continued incorporation of “crowdsourced” trail data from the International Mountain Bike Association.

The US Topo map improvement program has entered its third, three-year cycle of revising and updating digital US Topo quadrangles. These new US Topo maps replace the second edition US Topo maps and are available for no-cost file download from The National Map, the USGS Map Locator & Downloader website , and several other USGS applications.

The USGS recently released US Topo maps for Wisconsin, Iowa and Kansas which were the first set of states to feature TIGER data. The TIGER database contains all geographic features — such as roads (more than 6.3 million miles), railroads, rivers, and legal and statistical geographic boundaries — needed to support the Census Bureau’s data collection and dissemination programs.

To compare change over time, scans of legacy USGS topo maps, some dating back to the late 1800s, can be downloaded from the USGS Historical Topographic Map Collection.

For more information on US Topo maps: http://nationalmap.gov/ustopo/.

Scan of the 1886 legacy topographic map quadrangle of the greater Austin, Texas area from the USGS Historic Topographic Map Collection Updated 2016 version of the East Austin US Topo quadrangle with orthoimage turned off to better see the improved road network. (1:24,000 scale) Updated 2016 version of the East Austin US Topo quadrangle with orthoimage turned on. (1:24,000 scale)

Alaska Still a Likely Portal for Avian Influenza

Tue, 04/05/2016 - 12:00
Summary: ANCHORAGE, Alaska — The U.S. Geological Survey released additional evidence that western Alaska remains a hot spot for avian influenza to enter North America. The new report announces that while no highly pathogenic avian influenza viruses have been found in Alaska, the state remains an important area to monitor due to migratory bird flyways from North America and Eurasia that overlap the region.

Contact Information:

Andrew Ramey ( Phone: 907-786-7174 ); Paul  Laustsen ( Phone: 650-329-4046 );



ANCHORAGE, Alaska — The U.S. Geological Survey released additional evidence that western Alaska remains a hot spot for avian influenza to enter North America. The new report announces that while no highly pathogenic avian influenza viruses have been found in Alaska, the state remains an important area to monitor due to migratory bird flyways from North America and Eurasia that overlap the region.

“Our past research in western Alaska has shown that while we have not detected the highly pathogenic avian influenza virus, up to 70 percent of the other avian influenza viruses isolated in this area were found to contain genetic material from Eurasia, providing evidence for high levels of intercontinental viral exchange,” said Andy Ramey, a scientist with the USGS and lead author of the recent report. “This is because Asian and North American migratory flyways overlap in western Alaska.”

The designation of low or highly pathogenic avian influenza refers to the potential for these viruses to cause disease or kill chickens. The designation of “low pathogenic" or “highly pathogenic" does not refer to how infectious the viruses may be to humans, other mammals or other species of birds. Most strains of avian influenza are not highly pathogenic and cause few signs of disease in infected wild birds. However, in poultry, some low-pathogenic strains can mutate into highly pathogenic avian influenza strains that cause contagious and severe illness or death among poultry, and sometimes among wild birds as well.

Past research by the USGS, found low pathogenic H9N2 viruses in an Emperor Goose and a Northern Pintail. Both viruses were nearly identical genetically to viruses found in wild bird samples from Lake Dongting, China and Cheon-su Bay, South Korea. 

“These H9N2 viruses are low pathogenic and not known to infect humans, but similar viruses have been implicated in disease outbreaks in domestic poultry in Asia,” said Ramey. 

In the new report, the USGS collaborated with the Yukon Kuskokwim Health Corporation in Bethel, Alaska, and the Southeastern Cooperative Wildlife Disease Study in Athens, Georgia to obtain and test bird samples from Alaska Native subsistence hunters during spring of 2015. Hunters provided researchers with over 1,000 swabs from harvested water birds, the primary hosts of avian influenza viruses. 

Last year, the USGS published an article describing the introduction of highly pathogenic avian influenza into North America at the end of 2014, likely via migratory birds that migrated through Alaska. However, highly pathogenic avian influenza was never documented in Alaska. The highly pathogenic viruses spread throughout parts of the western and Midwestern U.S., impacting approximately 50 million poultry. However, those highly pathogenic viruses have now not been detected in North America since July 2015. 

This fall, the USGS will sample wild birds at Izembek National Wildlife Refuge. Most of those samples will come from sport hunters. 

The new report is entitled, “Surveillance for Eurasian-origin and intercontinental reassortant highly pathogenic influenza A viruses in Alaska, spring and summer 2015” and is published in Virology Journal.

Additional information about avian influenza can be found at the following websites: 

USGS Alaska Science Center

USGS National Wildlife Health Center USGS National Wildlife Health Center

Ecosystem Restoration Projects Generate Jobs and Business Activity in Local, Regional, and National Economies

Tue, 04/05/2016 - 10:00
Summary: Riparian planting in the Powell River watershed in Lee County, Virginia. Part of the Lone Mountain NRDAR restoration. Photo credit: Upper Tennessee River Roundtable. Clearing of juniper in the Burley Landscape in Idaho. Photo credit: BLM. FORT COLLINS, Colo. – From restoring the sagebrush sea to rejuvenating watersheds and landscapes after fires, ecosystem restoration can bear substantial economic fruit for local, state and national economies, according to a USGS study published today.

Contact Information:

Heidi Koontz ( Phone: 303-202-4763 ); Catherine Puckett ( Phone: 352-377-2469 );



Riparian planting in the Powell River watershed in Lee County, Virginia. Part of the Lone Mountain NRDAR restoration. Photo credit: Upper Tennessee River Roundtable. Clearing of juniper in the Burley Landscape in Idaho. Photo credit: BLM.

FORT COLLINS, Colo. – From restoring the sagebrush sea to rejuvenating watersheds and landscapes after fires, ecosystem restoration can bear substantial economic fruit for local, state and national economies, according to a USGS study published today.

USGS economists evaluated 21 Department of the Interior restoration projects and found that for each dollar invested in ecosystem restoration, there was a two- to three-fold return in economic activity that rippled through local, regional and national economies. Case study projects include restoration activities associated with Natural Resource Damage Assessment sites and Bureau of Land Management sagebrush and sage-grouse habitat restoration, fuels reduction and post-fire restoration projects. 

“Based on case study results, we found that for every $1 million invested in ecosystem restoration, between $2.2 and $3.4 million flow through to the U.S. economy, demonstrating how such investments support jobs and livelihoods, small businesses and rural economies,” said USGS economist and lead author Catherine Cullinane Thomas. 

The report quantified methods to provide economic impact analyses focused on the jobs and business activity generated through money spent on ecosystem restoration activities.  The research was a joint project among the USGS, the DOI Natural Resource Damage Assessment and Restoration Program, the DOI Office of Policy Analysis, and the BLM Socioeconomics Program.

"This report highlights the importance of restoration activities not only for the benefit of natural resources impacted by oil spills or hazardous chemicals, but also for the economic well-being of human communities," said Steve Glomb, director of the DOI Office of Restoration and Damage Assessment.

"The study shows that these collaborative projects sustain our local economies in addition to restoring our nation's public lands and resources," said Josh Sidon, a BLM economist and study co-author.

All 21 case studies can be found at https://www.fort.usgs.gov/economic-impacts-restoration.

Economic impacts are reported as job-years, a measure of the total number of annualized full and part-time jobs accumulated over the duration of the restoration project.  Labor income is a measure of the wages and salaries earned through the jobs supported by project expenditures. Value added is a measure of the contribution to Gross Domestic Product. Economic output is a measure of the total value of the production of goods and services supported by project expenditures.

 

Highlighted Case Studies:

Sagebrush Steppe Restoration in South Beaver Area, Utah -

Through Utah’s Watershed Restoration Initiative, the BLM and other federal, state and local agencies and organizations teamed up to help restore and manage high-priority ecosystems in Utah, including portions of Colorado Plateau and Great Basin. WRI partners are providing better wildlife habitat, restoring critical watersheds and reducing the risk of wildfire to urban communities. To date, WRI partners have restored more than 1.1 million acres in Utah. Sagebrush restoration in the South Beaver area is one of many WRI projects. This area is crucial mule deer winter habitat, contains important elk habitat and historic sage-grouse habitat. Restoration in this area is ongoing and encompasses 145,000 acres.

 

Total cost of restoration:  $3.5 million, an estimated 72 percent spent locally in Beaver, Garfield, Iron, Kane and Washington counties in Utah.

Local economic impacts:

Labor income: $1.9 million

Local economic output: $4.2 million

Contribution to GDP:  $2.5 million

Job-years: 37

Regional economic impacts:

Labor income: $3.5 million

Regional economic output: $8 million

Regional contribution to GDP: $4.6 million

Job-years: 59

Burley Landscape Sage-Grouse Habitat Restoration

The area surrounding the BLM’s Burley Field Office in Idaho is home to a variety of species, such as the greater sage-grouse, mule deer, antelope, bighorn sheep and pygmy rabbit. In the late 1800’s, with the settlement of the west, this landscape began to shift from a sagebrush steppe ecosystem to woodlands dominated by Utah juniper and conifers, decreasing available habitat for sagebrush-dependent species such as the sage-grouse and mule deer.

Total cost of restoration: $1.4 million

 

Local economic impacts:

Labor income: $300,000

Local economic output: $450,000

Contribution to GDP: more than $310,000

Job-years: 8

Regional economic impacts:

Labor income: $1.6 million

Regional economic output: $3.1 million

Contribution to GDP: $1.9 million

Job-years: 42

 Crab Orchard National Wildlife Refuge (Crab Orchard NWR): Wastewater Treatment Plant Remediation and Restoration -

The Crab Orchard National Wildlife Refuge in southern Illinois has a unique history of industry, employment and restoration. During World War II, the War Department established the Illinois Ordnance Plant on the site to manufacture ammunition and bombs. Following the war, the land was transferred into the National Wildlife Refuge System. In 1987, because of extensive environmental contamination from the ordnance plant and other industrial tenants, the U.S. Environmental Protection Agency designated the industrial complex as a Superfund site. The wastewater treatment plant on the Crab Orchard NWR is one of 21 sites on the refuge that have been remediated.

Total cost of restoration of wastewater treatment plant: $9 million, more than a third spent in local economy

Local economic impacts:

Labor income: $1.8 million

Local economic output: nearly $5 million

Contribution to GDP: contributed $3 million

Job-years: 32

National economic impacts:

Labor income: nearly $9 million

National economic output: $22 million

Contribution to GDP: more than $13 million

Job-years: 139

For more information on the other case studies in this report please see the accompanying website at https://www.fort.usgs.gov/economic-impacts-restoration. The USGS Open-File Report, Estimating the economic impacts of ecosystem restoration—methods and case studies, was authored by Catherine Cullinane Thomas, USGS; Christopher Huber, USGS; Kristin Skrabis, DOI; and Joshua Sidon, BLM.