Share

First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

USGS Newsroom

Syndicate content USGS
News Releases
Updated: 4 hours 32 min ago

Latest Idaho and New Mexico Quads Available

Wed, 01/22/2014 - 08:00
Newly designed US Topo maps for Idaho and New Mexico, featuring the Public Land Survey System, are now available online for free download

Contact Information:

Bob Davis ( Phone: 573-308-3554 ); Mark  Newell, APR ( Phone: 573-308-3850 );



The USGS, in cooperation with other Federal agencies, has posted new Idaho US Topo quadrangles (1,193) and New Mexico quads (1,980 maps) which include Public Land Survey System (PLSS). These are added to the growing list of states west of the Mississippi River to have PLSS data added to US Topo maps.

"It is a privilege to support production of the US Topo maps, as I am an extensive user of these products,” said Kristin Fishburn, a geographer with the USGS. “The capability to turn layers on and off combined with the continuous enhancements in content makes the maps particularly useful for a recreational user. I'm excited to peruse the new Idaho and New Mexico maps."

The PLSS is a way of subdividing and describing land in the United States. All lands in the public domain are subject to subdivision by this rectangular system of surveys, which is regulated by the U.S. Department of the Interior. Other selected states will begin getting PLSS map data during the next respective revision cycle.

The new design for US Topo maps improves readability of maps for online and printed use, while retaining the look and feel of the traditional USGS topo map. Map symbols are easy to read when the digital aerial photograph layer imagery is turned on. 

Other re-design enhancements and new features:

  • New shaded relief layer for enhanced view of the terrain
  • Military installation boundaries, post offices and cemeteries
  • New road classification
  • A slight screening (transparency) has been applied to some features to enhance visibility of multiple competing layers
  • New PDF legend attachment
  • Metadata formatted to support multiple browsers

US Topo maps are created from geographic datasets in The National Map, and deliver visible content such as high-resolution aerial photography, which was not available on older paper-based topographic maps. The new US Topo maps provide modern technical advantages that support wider and faster public distribution and on-screen geographic analysis tools for users.

The new digital topographic maps are PDF documents with geospatial extensions (GeoPDF®) image software format and may be viewed using Adobe Reader, available as a no-cost download.

These new quads replace the first edition US Topo maps for Idaho and New Mexico. The replaced maps will be added to the USGS Historical Topographic Map Collection which are also available for free download from The National Map and the USGS Map Locator & Downloader website.

US Topo maps are updated every three years. The initial round of the 48 conterminous state coverage was completed in September of 2012.  Hawaii and Puerto Rico maps have recently been added. More than 400 new US Topo maps for Alaska have been added to the USGS Map Locator & Downloader, but will take several years to complete.

For more information, go to: http://nationalmap.gov/ustopo/

Santa Fe, New Mexico 2013 US Topo quadrangle, with orthoimage off. (Larger image) Santa Fe, New Mexico 2013 US Topo quadrangle, showing PLSS data with contour, orthoimage and woodland layers off. Note: "US Topo maps are not legal documents. The PLSS information shown on these maps is for general reference purposes only, and should not be used to determine legal boundaries or land ownership. The Bureau of Land Management (BLM) is the authoritative source for PLSS information at the federal level, and the US Topo representation is derived from BLM GIS data files. The management of these data is not completely uniform throughout the country." (Larger image)

Large Old Trees Grow Fastest, Storing More Carbon

Wed, 01/15/2014 - 13:00

Contact Information:

Ben Young  Young Landis ( Phone: 916-616-9468 ); Nathan Stephenson ( Phone: 559-565-3176 );



THREE RIVERS, Calif, — Trees do not slow in their growth rate as they get older and larger — instead, their growth keeps accelerating, according to a study published today in the journal Nature.

"This finding contradicts the usual assumption that tree growth eventually declines as trees get older and bigger," says Nate Stephenson, the study's lead author and a forest ecologist with the U.S. Geological Survey. "It also means that big, old trees are better at absorbing carbon from the atmosphere than has been commonly assumed."

An international team of researchers compiled growth measurements of 673,046 trees belonging to 403 tree species from tropical, subtropical and temperate regions across six continents, calculating the mass growth rates for each species and then analyzing for trends across the 403 species. The results showed that for most tree species, mass growth rate increases continuously with tree size — in some cases, large trees appear to be adding the carbon mass equivalent of an entire smaller tree each year.

"In human terms, it is as if our growth just keeps accelerating after adolescence, instead of slowing down," explains Stephenson. "By that measure, humans could weigh half a ton by middle age, and well over a ton at retirement."

This continuously increasing growth rate means that on an individual basis, large, old trees are better at absorbing carbon from the atmosphere. Carbon that is absorbed or "sequestered" through natural processes reduces the amount of carbon dioxide in the atmosphere, and can help counter-balance the amount of CO2 people generate.

However, the researchers are careful to note that the rapid absorption rate of individual trees does not necessarily translate into a net increase in carbon storage for an entire forest.

"Old trees, after all, can die and lose carbon back into the atmosphere as they decompose," says Adrian Das, a USGS coauthor. "But our findings do suggest that while they are alive, large old trees play a disproportionately important role within a forest’s carbon dynamics. It is as if the star players on your favorite sports team were a bunch of 90-year-olds."

The study was a collaboration of 38 researchers from research universities, government agencies and non-governmental organizations from the United States, Panama, Australia, United Kingdom, Germany, Colombia, Argentina, Thailand, Cameroon, Democratic Republic of Congo, France, China, Taiwan, Malaysia, New Zealand and Spain. The study was initiated by Stephenson and Das through the USGS Western Mountain Initiative and the USGS John Wesley Powell Center for Analysis and Synthesis.

Accompanying Information for Press Release 

Secretary Jewell Lauds President's Intent to Nominate Suzette Kimball to Serve as Director of the U.S. Geological Survey

Fri, 01/10/2014 - 11:00

Contact Information:

Ethan Alpern ( Phone: 703-648-4406 );



WASHINGTON, D.C. – Secretary of the Interior Sally Jewell today praised President Obama's intent to nominate Dr. Suzette M. Kimball to serve as the Director of the U.S. Geological Survey, Interior’s chief science agency. Kimball has led the agency in an acting capacity since February 2013.

“USGS brings critical, impartial information to bear on some of the most complex issues facing our nation today – from the impacts of climate change to natural hazards and their threats,” said Jewell. “With her scientific expertise and decades of public service, Suzette is an excellent choice to lead this agency. During her time at USGS, Suzette has proven herself to be a smart, thoughtful and collaborative leader, and a strong advocate for using science to inform our understanding of our world and provide tools to solve natural resource challenges.”

If confirmed by the U. S. Senate, Kimball would lead the science agency of more than 8,000 scientists, technicians and support staff in more than 400 locations across the United States. The USGS mission is to provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.

The USGS Director also serves as Science Advisor to the Secretary of the Interior, overseeing activities of the Department’s Strategic Science Group and chairing the team of nine bureau science advisors.

Before assuming the USGS Acting Director position last year, Kimball served as the Deputy Director from 2010 to 2013; as the Associate Director for Geology from 2008 to 2010; as the Director of the Eastern Region from 2004 to 2008; and as the Eastern Regional Executive for Biology from 1998 to 2004. She was previously Acting Director from January to November 2009.
 
As Deputy Director, Kimball had executive leadership responsibility to execute scientific and administrative functions supported by USGS’s budget in excess of $1.1 billion. Kimball also led USGS’s international activities and represented all North American geological surveys on international mapping endeavors. 
 
As Associate Director for Geology, International and Climate Programs, Kimball was responsible for the development and strategic design of those important programs, and for programmatic performance metrics, budget initiatives and representation to the Department, OMB, Congress, other federal agencies and academic partners. 
 
Before working at USGS, Kimball served at the National Park Service as the Southeast Associate Regional Director and Regional Chief Scientist from 1993 to 1998. From 1991 to 1993, she was Research Coordinator in the Global Climate Change Program at the National Park Service; an Assistant Professor of Environmental Sciences at the University of Virginia; and Co-Founder and Co-Director of the Center for Coastal Management and Policy and Associate Marine Scientist at the Virginia Institute of Marine Science, College of William and Mary. 
 
Kimball served in the U.S. Army Corps of Engineers from 1983 to 1986 as a Coastal Engineering Research Center Chief and a Program Manager for Barrier Islands Sedimentation Studies. From 1979 to 1983, she served as a Research Coordinator and a Research Assistant at the Department of Environmental Sciences at the University of Virginia. 
 
Kimball received a Ph.D. in Environmental Sciences/Coastal & Oceanographic Processes from the University of Virginia (1983); an M.S. in Geology/Geophysics from Ball State University (1981); and a B.A. from the College of William and Mary.
 
Kimball has authored more than 75 technical publications on issues dealing with coastal ecosystem science, coastal zone management and policy, and natural resource exploration, evaluation and management. She has delivered more than 50 invited professional presentations and 70 conference presentations. Her numerous professional appointments and offices include serving on the National Academy of Science’s Institute of Medicine, Roundtable on Environmental Health, Research and Medicine; NAS Roundtable on Science & Technology for Sustainability and U.S. National Committee for Geosciences of the NAS Board on International Scientific Organizations.

Kimball has twice received the Presidential Rank Award for Meritorious Executive Leadership and the Secretary's Gold Award for Executive Leadership.

Secretary Jewell Lauds PresidentÂ’s Intent to Nominate Suzette Kimball to Serve as Director of the U.S. Geological Survey

Fri, 01/10/2014 - 11:00

WASHINGTON, D.C. – Secretary of the Interior Sally Jewell today praised President Obama's intent to nominate Dr. Suzette M. Kimball to serve as the Director of the U.S. Geological Survey, Interior’s chief science agency. Kimball has led the agency in an acting capacity since February 2013.

“USGS brings critical, impartial information to bear on some of the most complex issues facing our nation today – from the impacts of climate change to natural hazards and their threats,” said Jewell. “With her scientific expertise and decades of public service, Suzette is an excellent choice to lead this agency. During her time at USGS, Suzette has proven herself to be a smart, thoughtful and collaborative leader, and a strong advocate for using science to inform our understanding of our world and provide tools to solve natural resource challenges.”

If confirmed by the U. S. Senate, Kimball would lead the science agency of more than 8,000 scientists, technicians and support staff in more than 400 locations across the United States. The USGS mission is to provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.

The USGS Director also serves as Science Advisor to the Secretary of the Interior, overseeing activities of the Department’s Strategic Science Group and chairing the team of nine bureau science advisors.

Before assuming the USGS Acting Director position last year, Kimball served as the Deputy Director from 2010 to 2013; as the Associate Director for Geology from 2008 to 2010; as the Director of the Eastern Region from 2004 to 2008; and as the Eastern Regional Executive for Biology from 1998 to 2004. She was previously Acting Director from January to November 2009.
 
As Deputy Director, Kimball had executive leadership responsibility to execute scientific and administrative functions supported by USGS’s budget in excess of $1.1 billion. Kimball also led USGS’s international activities and represented all North American geological surveys on international mapping endeavors. 
 
As Associate Director for Geology, International and Climate Programs, Kimball was responsible for the development and strategic design of those important programs, and for programmatic performance metrics, budget initiatives and representation to the Department, OMB, Congress, other federal agencies and academic partners. 
 
Before working at USGS, Kimball served at the National Park Service as the Southeast Associate Regional Director and Regional Chief Scientist from 1993 to 1998. From 1991 to 1993, she was Research Coordinator in the Global Climate Change Program at the National Park Service; an Assistant Professor of Environmental Sciences at the University of Virginia; and Co-Founder and Co-Director of the Center for Coastal Management and Policy and Associate Marine Scientist at the Virginia Institute of Marine Science, College of William and Mary. 
 
Kimball served in the U.S. Army Corps of Engineers from 1983 to 1986 as a Coastal Engineering Research Center Chief and a Program Manager for Barrier Islands Sedimentation Studies. From 1979 to 1983, she served as a Research Coordinator and a Research Assistant at the Department of Environmental Sciences at the University of Virginia. 
 
Kimball received a Ph.D. in Environmental Sciences/Coastal & Oceanographic Processes from the University of Virginia (1983); an M.S. in Geology/Geophysics from Ball State University (1981); and a B.A. from the College of William and Mary.
 
Kimball has authored more than 75 technical publications on issues dealing with coastal ecosystem science, coastal zone management and policy, and natural resource exploration, evaluation and management. She has delivered more than 50 invited professional presentations and 70 conference presentations. Her numerous professional appointments and offices include serving on the National Academy of Science’s Institute of Medicine, Roundtable on Environmental Health, Research and Medicine; NAS Roundtable on Science & Technology for Sustainability and U.S. National Committee for Geosciences of the NAS Board on International Scientific Organizations.

Kimball has twice received the Presidential Rank Award for Meritorious Executive Leadership and the Secretary's Gold Award for Executive Leadership.

The Connected Consequences of River Dams

Thu, 01/09/2014 - 13:51

Contact Information:

Jon Campbell ( Phone: 703-648-4180 ); Katherine Skalak ( Phone: 703-648-5435 );



In a case study of dams on the upper Missouri River, USGS researchers have demonstrated that an upstream dam is still a major control of river dynamics where the backwater effects of a downstream reservoir begin. In light of this finding, the conventional understanding of how a dam can influence a river may have to be adjusted to account for the fact that effects of river dams can interact with one another.

"We have known for a long time that dams have dramatic effects on river form and function," said Jerad Bales, acting USGS Associate Director for Water. "In the past, however, the effects of dams generally have been studied individually, with relatively little attention paid to how the effects could interact along a river corridor."

One of the greatest modifications of rivers by humans has been the construction of dams that provide valuable services such as irrigation, hydroelectric power, navigation, flood protection, and recreational opportunities. Hundreds of thousands of dams have been built worldwide, beginning for the most part in the 20th century. 

The downstream effects of river dams have been well documented by previous researchers. In the presence of a dam, it can often take hundreds of kilometers for a river to adjust to its natural state. The upstream impacts of dams have also been widely considered, particularly sedimentation of reservoirs. These effects may extend upstream for many kilometers. 

"In addition to documenting dramatic changes to a section of the Missouri River during the 2011 floods," Bales continued, "the unique contribution of this important study is development of a conceptual model that establishes a framework for future studies of the many rivers affected by dams in series."  

Working with historical aerial photography, streamgage data, and cross sectional surveys in a careful analysis of the Garrison (N.D.) and Oahe (S.D.) dams on the Missouri River, the USGS researchers propose a conceptual model of how interacting dams might affect a river's physical characteristics (geomorphology).  This model applies to dams on large rivers and divides the river into various zones of predictable behavior (Figure 1).  

The researchers also conducted a geographic analysis of dams along 66 major rivers (as listed in a standard professional reference) in the contiguous United States to determine how often dams occur in a series. Of the rivers analyzed, 404 dams were located on the main stem of 56 of the rivers. Fifty of these rivers had more than one dam on the river creating a total of 373 possible interacting dam sequences.

The results from this work indicate that more than 80% of large rivers may have interactions between their dams. Given this widespread occurrence, the USGS investigators suggest that dam interaction is prevalent and should be the focus of additional research. 

The study was published in the journal Anthropocene  (Oct. 2013). 

Figure 1.  Conceptual model of how two dams in a sequence may interact. 

The diagram correlates the river zones created by large dams (shown on left) to the morphological features (described on right) that each zone influences.  

Conceptual model of how two dams in a sequence may interact. (High resolution image)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learn more

USGS studies on 2011 floods 

USGS activities related to suspended sediment  

USGS Water National Research Program

Climate Change Could Negatively Affect Chase Lake Pelican Population

Wed, 01/08/2014 - 17:15

Contact Information:

Marsha Sovada ( Phone: 701 253 5506 ); Jennifer LaVista ( Phone: 720-432-1043 );



Earlier spring nesting related to climate change could negatively affect the survival of pelican chicks at Chase Lake National Wildlife Refuge, N.D., according to a new U.S. Geological Survey report.

USGS scientists found that American white pelicans are migrating north to a large nesting colony at Chase Lake National Wildlife Refuge about 16 days earlier in the springtime than they did 45 years ago. The earlier migration is likely spurred by warmer spring temperatures on the pelicans’ wintering grounds and along their migration route, but ideal post-hatching weather conditions have not advanced at the nesting colony. Now, vulnerable pelican chicks face a higher risk of encountering life-threatening wet and cold conditions.

Chase Lake is a refuge for the largest American white pelican colony in North America, so declining chick survival rates at this refuge could be especially damaging. On average, over 26,000 adult pelicans nested annually at Chase Lake between 2004 and 2008.

"Given that nearly half of the entire pelican breeding population nests at fewer than 10 colonies in the northern plains, maintaining good productivity at these colonies is important to the health of the species," said Marsha Sovada, USGS scientist and lead author of the study. "Increased mortality of chicks at Chase Lake is a conservation concern."

The study found that while spring temperatures in the northern plains have progressively increased since 1965, the timing of severe weather in the Chase Lake area has not changed during this period. Because pelican eggs are hatching earlier than in the past, the chicks are at their most vulnerable stage of growth—between two and three weeks old—during a time when extreme cold and wet weather is more likely.

Researchers observed significant loss of chicks to exposure in four of five years (2004–2008) of field study. For example, at Chase Lake in June 2008, about 80 percent of the pelican chicks between two and three weeks old died of exposure during a period of severe weather.  

The study was published today in the journal PLOS ONE, and is available online.

For more information on pelican population dynamics in the Northern Plains, please visit the USGS Northern Prairie Wildlife Research Center website.

 

[Access images for this release at: <a href="http://gallery.usgs.gov/tags/NR2014_01_07" _mce_href="http://gallery.usgs.gov/tags/NR2014_01_07">http://gallery.usgs.gov/tags/NR2014_01_07</a>]

Earthquake Events on Par For 2013

Wed, 01/08/2014 - 15:37

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 );



Several significant earthquakes occurred in 2013, including two magnitude 8.0 or greater temblors according to the U.S. Geological Survey. Seventeen earthquakes reached magnitude 7.0-7.9 and two in the range of 8.0-8.9.

The USGS measured 1194 quakes magnitude 5.0 or larger in 2013. This is a number that changes annually; in 2012, 1558 quakes magnitude 5.0 or larger were measured, and in 2011, 2495.

Earthquakes were responsible for about 1400 deaths in 2013, with 825 having perished in the magnitude 7.7 Pakistan event on Sept. 24, as reported by the United Nations Office for Coordination of Humanitarian Affairs. Deadly quakes also occurred in the Philippines, Iran, China, Indonesia, the Santa Cruz Islands and Afghanistan.

The biggest earthquake in the United States and the 6th largest quake of 2013 was a magnitude 7.5 in Craig, Alaska on Jan. 5. Several quakes below magnitude 5.0 rattled Oklahoma, Texas, Kansas and Arkansas throughout the year. An unusual seismic event happened near Chicago, Ill. on Nov. 4; a magnitude 3.2 rockburst that occurred within seconds after a routine explosion at a quarry.

The USGS estimates that several million earthquakes occur throughout the world each year, although most go undetected because they hit remote areas or have very small magnitudes. On average, the USGS National Earthquake Information Center publishes the locations for about 40 earthquakes per day, or about 14,500 annually. USGS publishes worldwide earthquakes with a magnitude of 4.5 or greater or U.S. earthquakes of 2.5 or greater. On average, 18 of these earthquakes have a magnitude of 7.0 or higher each year.

To monitor earthquakes worldwide, the USGS National Earthquake Information Center receives data in real-time from about 1,000 stations in 85 countries, including the 150-station Global Seismographic Network, which is jointly supported by the USGS and the National Science Foundation and operated by the USGS in partnership with the Incorporated Research Institutions for Seismology (IRIS) consortium of universities. Domestically, the USGS partners with 13 regional seismic networks operated by universities; these networks provide detailed coverage for the areas of the country with the highest seismic risk.

Earthquakes pose significant risk to 75 million Americans in 39 States. The USGS and its partners in the multi-agency National Earthquake Hazard Reduction Program are working to improve earthquake monitoring and reporting capabilities via the USGS Advanced National Seismic System. More information about ANSS can be found on the ANSS website.

New Sensor Network to Detail Virginia Earthquakes

Wed, 01/08/2014 - 15:00
Installation of 20 Seismometers Begins This Week

Contact Information:

Thomas Pratt ( Phone: 206-919-8773 ); Martin  Chapman ( Phone: 540-392-5396 ); Christian Quintero ( Phone: 813-498-5019 );



Editor’s note: Reporters interested in accompanying the scientists as they install the seismic arrays between Jan. 9 and 13 should call Thomas Pratt at 206-919-8773 or Martin Chapman at 540-392-5396 to coordinate opportunities.  

Reston, Va. – Scientists from the U.S. Geological Survey and Virginia Tech will install a 20-station seismic network in the central Virginia area beginning Jan. 8. The new sensors – each about the size of a soda can – will provide information to help the researchers study the background seismicity in the area and any continuing aftershocks of the Aug. 23, 2011 earthquake near Louisa and Mineral, Va.

More than 450 aftershocks have been recorded since that magnitude 5.8 earthquake, which was felt from central Georgia to central Maine, and west to Detroit and Chicago.  It is estimated that approximately one-third of the U.S. population could have felt the earthquake, which damaged the Washington National Cathedral and the Washington Monument.

The 20-station network will be placed in locations from Charlottesville in the west, to east of Richmond, and for about 40 miles in a north-south direction centered along Interstate 64.

During the installations, USGS and Virginia Tech crews will place a seismometer and 

electronic data logger at each site; at some sites a solar panel will be installed to power the equipment. In locations where sensors are being installed on private property, the landowners have volunteered their sites. The installations are expected to be completed by Jan. 13. 

The seismic network will record tiny ground vibrations caused by earthquakes, and the science team will use the data to better understand earthquakes in the Central Virginia Seismic Zone. Network sensors will also help determine if the earthquakes align with specific faults by increasing the number of earthquakes detected and improving the accuracy of the locations.  

Additional information about the earthquakes in Virginia is available online.

For more information about the USGS earthquake hazard program please visit http://earthquake.usgs.gov/.