First State Geology Newsletter Signup

First State Geology has been the newsletter of DGS for over 25 years.

Click here to signup!

Federal News

Revised Preliminary Flood Maps in El Paso County, Texas Ready for Public View

FEMA Press Releases - Wed, 01/07/2015 - 10:50

DENTON, Texas – Homeowners, renters and business owners in El Paso County in Texas are encouraged to look over newly-revised preliminary flood maps in order to determine their flood risks and make informed decisions.

Language English
Categories: Federal News

Public Invited to Comment on Dona Ana County, NM Preliminary Flood Maps

FEMA Press Releases - Wed, 01/07/2015 - 10:48

DENTON, Texas– Months of teamwork by officials from Dona Ana County and the Federal Emergency Management Agency (FEMA) have led to new preliminary flood maps. Now, the public is encouraged to participate in a 90-day appeal and comment period about the maps.

Homeowners, renters and business owners in Dona Ana County are encouraged to view the preliminary flood maps to better understand where flood risks have been identified. Those who would like to file an appeal have until March 11, 2015 to submit them. 

Language English
Categories: Federal News

By Bike, Foot or Hoof: New Arizona Maps Feature Trails

USGS Newsroom - Wed, 01/07/2015 - 10:00
Summary: Newly released US Topo maps for Arizona now feature mountain bike trails, segments of the Arizona National Scenic Trail and Public Land Survey System data

Contact Information:

Mark Newell, APR ( Phone: 573-308-3850 ); Larry  Moore ( Phone: 303-202-4019 );

Newly released US Topo maps for Arizona now feature mountain bike trails, segments of the Arizona National Scenic Trail and Public Land Survey System data.  Several of the 1,880 new US Topo quadrangles for the state now display these selected new features along with other improved data layers.

“Having recently returned to Arizona, I am excited to re-explore our state using the new USGS Arizona Topo maps,” said Curtis Pulford, Arizona State Cartographer.  “Detailed topographic maps are one of the best ways I know to visualize the terrain one is planning to examine.  All who use these will appreciate the newly updated reference features, such as BLM Public Lands Survey System, roadways, schools, fire and police stations, post offices, and hospitals.   Mountain bikers will appreciate the addition of International Mountain Biking Association trails.  And the addition of the 817 mile, border to border, Arizona National Scenic Trail will be an outstanding resource for nature enthusiasts, hikers and equestrians.” 

For Arizona residents and visitors who want to explore the landscape on a bicycle seat, the new mountain bike trails will come in handy. The mountain bike trail data is provided through a partnership with the International Mountain Biking Association (IMBA) and MTB Project. During the past two years, the IMBA has been building a detailed national database of mountain bike trails with the aid and support of the MTB Project. This activity allows local IMBA chapters, IMBA members, and the public to provide trail data and descriptions through their website.  MTB Project and IMBA then verify the quality of the trail data provided, ensure accuracy and confirm that the trail is legal.  This unique “crowdsourcing” project has allowed availability of mountain bike trail data though mobile and web apps, and the revised US Topo maps.

National Scenic Trail enthusiasts can now find the “Arizona Trail” on new US Topo map segments. The Arizona National Scenic Trail stretches more than 800 miles from the Mexican border to Utah to connect deserts, mountains, canyons, wilderness, history, communities and people.  Rugged, wild and challenging, this trail showcases Arizona’s diverse vegetation, wildlife, scenery, and historic and prehistoric sites in a way that provides a unique and unparalleled Arizona experience.

“For more than 20 years the Arizona Trail Association’s members have been creating, maintaining, and mapping the Arizona National Scenic Trail,” said Aaron Seifert, GIS Director for the Arizona Trail Association. “Since the trail was designated as a National Scenic Trail in 2009 and completed in 2011, it is very exciting to display the entire trail on the new set of US Topo maps for many more to discover the diverse landscape of Arizona from this amazing trail.”

The USGS partnered with the U.S. Forest Service and the Arizona Trail Association to incorporate the trail data onto the Arizona US Topo maps. This NST joins the Ice Age National Scenic Trail, the Pacific Northwest National Scenic Trail the North Country National Scenic Trail, the Pacific Crest National Scenic Trail, and the Appalachian National Scenic Trail as being featured on the new US Topo quads. The USGS hopes to eventually include all National Scenic Trails in The National Map products.

Another important addition to the new Arizona US Topo maps in the inclusion of Public Land Survey System. PLSS is a way of subdividing and describing land in the US. All lands in the public domain are subject to subdivision by this rectangular system of surveys, which is regulated by the U.S. Department of the Interior.

These new maps replace the first edition US Topo maps for Arizona and are available for free download from The National Map, the USGS Map Locator & Downloader website , or several other USGS applications.

To compare change over time, scans of legacy USGS topo maps, some dating back to the late 1800s, can be downloaded from the USGS Historical Topographic Map Collection

For more information on US Topo maps:

New (2014) Black Canyon City, Arizona US Topo quadrangle with orthoimage turn on. (1:24,000 scale). (high resolution image 1.3 MB) Historical USGS topographic map of the Prescott, Arizona area (1887). !:250,000 scale. (high resolution image 1.6 MB) Zoom of the Black Canyon City, Arizona, US Topo quadrangle. The Blank Canyon Trail (BCT) is denoted by a dashed line on the left side of the graphic. (high resolution image 1.2 MB)

Fewer Large Earthquakes in 2014

USGS Newsroom - Wed, 01/07/2015 - 09:00
Summary: While the number of large earthquakes fell to 12 in 2014, from 19 in 2013, several moderate temblors hit areas relatively new to seismicity, including Oklahoma and Kansas, according to the U.S. Geological Survey

Contact Information:

Heidi  Koontz ( Phone: 303-202-4763 );

While the number of large earthquakes fell to 12 in 2014, from 19 in 2013, several moderate temblors hit areas relatively new to seismicity, including Oklahoma and Kansas, according to the U.S. Geological Survey. Worldwide, 11 earthquakes reached magnitude 7.0-7.9 and one registered magnitude 8.2, in Iquique, Chile, on April 1. This is the lowest annual total of earthquakes magnitude 7.0 or greater since 2008, which also had 12.

Earthquakes were responsible for about 664 deaths in 2014, with 617 having perished in the magnitude 6.1 Ludian Xian, Yunnan, China, event on August 3, as reported by the United Nations Office for Coordination of Humanitarian Affairs. Deadly quakes also occurred in Chile, Nicaragua, Papua New Guinea, and the United States.

A magnitude 6.0 quake struck American Canyon, California (South Napa) in the early hours of August 24, triggering more than 41,300 responses via the USGS Did You Feel It? website. One woman died from her injuries 12 days later. This temblor also represents northern California’s strongest earthquake since the October 1989 Loma Prieta event.

The biggest earthquake in the United States, and the second largest quake of 2014, was a magnitude 7.9 event in the Aleutian Islands of Alaska on June 23. Several quakes below magnitude 5.0 rattled Oklahoma, Texas, Kansas, Arkansas and Arizona throughout the year. The USGS estimates that several million earthquakes occur throughout the world each year, although most go undetected because they have very small magnitudes or hit remote areas.

On average, the USGS National Earthquake Information Center (NEIC) publishes the locations for about 40 earthquakes per day, or about 14,500 annually. The USGS NEIC publishes worldwide earthquakes with a magnitude of 4.0 or greater or U.S. earthquakes of 2.5 or greater. On average each year since about 1900, 18 have a magnitude of 7.0 or higher.

To monitor earthquakes worldwide, the USGS NEIC receives data in real-time from about 1,700 stations in more than 90 countries. These stations include the 150-station Global Seismographic Network, which is jointly supported by the USGS and the National Science Foundation, and is operated by the USGS in partnership with the Incorporated Research Institutions for Seismology (IRIS) consortium of universities. Domestically, the USGS partners with 13 regional seismic networks operated by universities that provide detailed coverage for the areas of the country with the highest seismic risk. 

In the U.S., 42 of the 50 states, plus Puerto Rico, may experience damaging ground shaking from an earthquake in 50 years, the nominal lifetime of a building. The USGS and its partners in the multi-agency National Earthquake Hazard Reduction Program are working to improve earthquake monitoring and reporting capabilities through the development of the USGS Advanced National Seismic System (ANSS). More information about ANSS can be found on the ANSS website.

Read a USGS feature story to learn more about other natural hazards in 2014.

Polar Bears Shifting to Areas with More Sea Ice -- Genetic Study Reveals

USGS Newsroom - Tue, 01/06/2015 - 14:00
Summary: Editors: B-roll footage of polar bear research is available for your use.

Contact Information:

Paul Laustsen ( Phone: 650-329-4046 );

Editors: B-roll footage of polar bear research is available for your use.

ANCHORAGE, Alaska — In a new polar bear study published today, scientists from around the Arctic have shown that recent generations of polar bears are moving towards areas with more persistent year-round sea ice.

Research scientists, led by the U.S. Geological Survey, found that the 19 recognized subpopulations of polar bears group into four genetically-similar clusters, corresponding to ecological and oceanographic factors. These four clusters are the Eastern Polar Basin, Western Polar Basin, Canadian Archipelago, and Southern Canada.

The scientists also detected directional gene flow towards the Canadian Archipelago within the last 1-3 generations. Gene flow of this type can result from populations expanding and contracting at different rates or directional movement and mating over generations. The findings of spatial structure (clusters) and directional gene flow are important because they support the hypothesis that the species is coalescing to the region of the Arctic most likely to retain sea ice into the future.

“The polar bear’s recent directional gene flow northward is something new,” said Elizabeth Peacock, USGS researcher and lead author of the study. “In our analyses that focused on more historic gene flow, we did not detect movement in this direction.” The study found that the predominant gene flow was from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago where the sea ice is more resilient to summer melt due to circulation patterns, complex geography, and cooler northern latitudes.

Projections of future sea ice extent in light of climate warming typically show greater retention of sea ice in the northern Canadian Archipelago than in other regions.

“By examining the genetic makeup of polar bears, we can estimate levels and directions of gene flow, which represents the past story of mating and movement, and population expansion and contraction,” said Peacock. “Gene flow occurs over generations, and would not be detectable by using data from satellite-collars which can only be deployed on a few polar bears for short periods of time.”

The authors also found that female polar bears showed higher fidelity to their regions of birth than did male polar bears. Data to allow comparison of the movements of male and female polar bears is difficult to obtain because male bears cannot be collared as their necks are wider than their heads.

The study also confirmed earlier work that suggests that modern polar bears stem from one or several hybridization events with brown bears. No evidence of current polar bear-brown bear hybridization was found in the more than 2,800 samples examined in the current study. Scientists concluded that the hybrid bears that have been observed in the Northern Beaufort Sea region of Canada represent a recent and currently localized phenomenon. Scientists also found that polar bear populations expanded and brown bear populations contracted in periods with more ice. In periods with less ice, the opposite was true.

The goal of the study was to see how genetic diversity and structure of the worldwide polar bear population have changed over the recent dramatic decline in their sea-ice habitat. The USGS and the Government of Nunavut led the study with scientists from 15 institutions representing all five nations with polar bears (U.S., Canada, Greenland, Norway, and Russia).  

This circumpolar, multi-national effort provides a timely perspective on how a rapidly changing Arctic is influencing the gene flow and likely future distribution of a species of worldwide conservation concern.  

The paper “Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic” was published today in the journal PLOS One.

Stay Safe During Bitterly Cold Temperatures and Dangerous Snow Conditions

FEMA Press Releases - Tue, 01/06/2015 - 10:48

CHICAGO – Dangerously low temperatures and accumulating snow are in the forecast for much of the Midwest and the U.S. Department of Homeland Security’s Federal Emergency Management Agency (FEMA) wants individuals and families to be safe when faced with the hazards of cold temperatures and winter weather.

Language English
Categories: Federal News

Endangered Salmon Population Monitored with eDNA for First Time

USGS Newsroom - Mon, 01/05/2015 - 14:00
Summary: CORVALLIS, Ore. — Scientists from the U.S. Geological Survey and Washington State University have discovered that endangered Chinook salmon can be detected accurately from DNA they release into the environment. The results are part of a special issue of the journal Biological Conservation on use of environmental DNA to inform conservation and management of aquatic species.

Contact Information:

Susan Kemp ( Phone: 541-750-1047 ); Paul Laustsen ( Phone: 650-329-4046 );

CORVALLIS, Ore. — Scientists from the U.S. Geological Survey and Washington State University have discovered that endangered Chinook salmon can be detected accurately from DNA they release into the environment. The results are part of a special issue of the journal Biological Conservation on use of environmental DNA to inform conservation and management of aquatic species.

The special issue contains eleven papers that move the detection of aquatic species using eDNA from concept to practice and include a thorough examination of the potential benefits, limitations and biases of applying eDNA methods to research and monitoring of animals. 

“The papers in this special edition demonstrate that eDNA techniques are beginning to realize their potential contribution to the field of conservation biology worldwide,” said Caren Goldberg, Assistant Professor at Washington State University and lead editor of the special issue.

DNA, or deoxyribonucleic acid, is the hereditary material that contains the biological instructions to build and maintain all life forms; eDNA is the DNA that animals release into the environment through normal biological processes from sources such as feces, mucous, skin, hair, and carcasses. Research and monitoring of rare, endangered, and invasive species can be done by analyzing eDNA in water samples.

A paper included in the special issue by USGS ecologists Matthew Laramie and David Pilliod, and Goldberg, looked at the potential for eDNA analysis to improve detection of Chinook salmon in the Upper Columbia River in Washington, USA and British Columbia, Canada. This is the first time eDNA methods have been used to monitor North American salmon populations. The successful project also picked up evidence of Chinook in areas where they have not been previously observed.

“The results from this study indicate that eDNA detection methods are an effective way to determine the distribution of Chinook across a large area and can potentially be used to document the arrival of migratory species, like Pacific salmon, or colonization of streams following habitat restoration or reintroduction efforts,” said Laramie.

Spring Chinook of the Upper Columbia River are among the most imperiled North American salmon and are currently listed as endangered under the Endangered Species Act. Laramie has been working with the Confederated Tribes of the Colville Reservation Fisheries Program in the use of eDNA to document the success of reintroduction of Spring Chinook into the Okanogan Basin of the Upper Columbia River.

The papers of the special issue focus on techniques for analyzing eDNA samples, eDNA production and degradation in the environment and the laboratory, and practical applications of eDNA techniques in detecting and managing endangered fish and amphibians.

The co-editors, Goldberg, Pilliod, and WSU researcher Katherine Strickler, open the special issue with an overview on the state of eDNA science, a field developed from the studies of micro-organisms in environmental samples and DNA collected from ancient specimens such as mummified tissues or preserved plant remains.

“Incorporating eDNA methods into survey and monitoring programs will take time, but dedicated professionals around the world are rapidly advancing these methods closer to this goal,” said Goldberg.

Strickler, Goldberg, and WSU Assistant Professor Alexander Fremier authored a paper which quantified the effects of ultraviolet radiation, temperature, and pH on eDNA degradation in aquatic systems. Using eDNA from bullfrog tadpoles, the scientists determined that DNA broke down faster in warmer temperatures and higher levels of Ultraviolet-B light. 

“We need to better understand how long DNA can be detected in water under different conditions. Our work will help improve sampling strategies for eDNA monitoring of sensitive and invasive species,” said Strickler.

“These papers lead the way in advancing eDNA sample collection, processing, analysis, and interpretation,” said Pilliod, “eDNA methods have great promise for detecting aquatic species of concern and may be particularly useful when animals occur in low numbers or when there are regulatory restrictions on the use of more invasive survey techniques.”

How Does White-Nose Syndrome Kill Bats?

USGS Newsroom - Mon, 01/05/2015 - 12:00
Summary: For the first time, scientists have developed a detailed explanation of how white-nose syndrome (WNS) is killing millions of bats in North America, according to a new study by the U.S. Geological Survey and the University of Wisconsin New Science Helps Explain Hibernation Disease

Contact Information:

Marisa Lubeck ( Phone: 303-202-4765 ); Gail Moede Rogall ( Phone: 608-270-2438 );

For the first time, scientists have developed a detailed explanation of how white-nose syndrome (WNS) is killing millions of bats in North America, according to a new study by the U.S. Geological Survey and the University of Wisconsin. The scientists created a model for how the disease progresses from initial infection to death in bats during hibernation. 

“This model is exciting for us, because we now have a framework for understanding how the disease functions within a bat,” said University of Wisconsin and USGS National Wildlife Health Center scientist Michelle Verant, the lead author of the study. “The mechanisms detailed in this model will be critical for properly timed and effective disease mitigation strategies.” 

Scientists hypothesized that WNS, caused by the fungus Pseudogymnoascus destructans, makes bats die by increasing the amount of energy they use during winter hibernation. Bats must carefully ration their energy supply during this time to survive without eating until spring. If they use up their limited energy reserves too quickly, they can die. 

The USGS tested the energy depletion hypothesis by measuring the amounts of energy used by infected and healthy bats hibernating under similar conditions. They found that bats with WNS used twice as much energy as healthy bats during hibernation and had potentially life-threatening physiologic imbalances that could inhibit normal body functions. 

Scientists also found that these effects started before there was severe damage to the wings of the bats and before the disease caused increased activity levels in the hibernating bats.

“Clinical signs are not the start of the disease — they likely reflect more advanced disease stages,” Verant said. “This finding is important because much of our attention previously was directed toward what we now know to be bats in later stages of the disease, when we observe visible fungal infections and behavioral changes.” 

Key findings of the study include:

  • Bats infected with P. destructans had higher proportions of lean tissue to fat mass at the end of the experiment compared to the non-infected bats. This finding means that bats with WNS used twice as much fat as healthy control bats over the same hibernation period. The amount of energy they used was also higher than what is expected for normal healthy hibernating little brown bats.
  • Bats with mild wing damage had elevated levels of dissolved carbon dioxide in their blood resulting in acidification and pH imbalances throughout their bodies. They also had high potassium levels, which can inhibit normal heart function.  

The study, “White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host,” is published in BMC Physiology. Learn more about WNS, ongoing research and actions that are being taken here:

White-nose Syndrome Images